Ground Response Analysis and Determination of Liquefaction Potential Index

Author(s):  
Tanumaya Mitra ◽  
Kalyan Kumar Chattopadhyay ◽  
Ambarish Ghosh
2020 ◽  
Vol 6 (3) ◽  
pp. 319
Author(s):  
Lindung Zalbuin Mase ◽  
Muhammad Farid ◽  
Nanang Sugianto ◽  
Sintia Agustina

Bengkulu City is one of the areas vulnerable to earthquakes in Indonesia and several studies have shown the city experienced a unique phenomenon called liquefaction during the Mw 8.6 Bengkulu-Mentawai Earthquake. This event has initiated a step by step intensive study on earthquake in the area but previous studies are generally limited by the use of site investigation data to empirically analyse liquefaction potential and those that used advance method such as the seismic wave propagation model are rare. This means the level of liquefaction damage in the study area is not totally understood, therefore, this research focused on implementing the ground response analysis to quantify the Liquefaction Potential Index (LPI) using several areas in Bengkulu City in order to determine their vulnerability. The process involved the collection of several site investigation data including boring log and shear wave velocity profile as well as a desk study to determine the geological condition of the observed sites. Moreover, a non-linear seismic ground response analysis was conducted to obtain maximum ground surface acceleration (amax) parameter which was further used to analyse the liquefaction potential in the study area. The results showed several sites have the potential to experience liquefaction during earthquakes. The method applied was considered successful and the results are expected to be implemented for city development. Furthermore, the framework is recommended for adoption in investigating the liquefaction in other areas.


2021 ◽  
pp. 875529302110013
Author(s):  
Nikolaos Ntritsos ◽  
Misko Cubrinovski ◽  
Brendon A Bradley

This article scrutinizes the determination of input motions for forensic ground-response analysis in the near-source region, based on recorded surface ground motions at strong-motion station sites, from the same event. The first part of the article draws upon observed ground motions from the 22 February 2011 6.2 Mw Christchurch earthquake to discuss key challenges of the problem associated with the strong spatial variation of ground motion in the near-source region. Effects from the complexity of the rupture, propagation of seismic waves through complex geological structures, and site characteristics are explored. It is argued that, because of the strongly varying source-path “signature” on near-source ground motions, “reference” input motions for ground-response analysis must be specific to, and have similar signature characteristics (be “compatible”) with, the target site which is subject to the analysis. The second part of the article presents a four-step procedure for the derivation of site-specific input motions involving (1) determination of the reference layer where the input motion is to be applied in the analysis, (2) record selection considering the appropriateness of the recording station site for deconvolution and its compatibility with the target site, (3) deconvolution of the selected record to remove local site effects from the recorded ground motion, and (4) scaling of the deconvolved motion to account for differences in the source-to-site distance between the recording station and the target site. As part of the proposed procedure, a novel (amplitude-duration) scaling method is presented. Results from one-dimensional (1D) effective-stress analysis of two target Christchurch sites using input motions from the proposed procedure are used to critically evaluate the procedure and discuss essential requirements for its successful application.


Sign in / Sign up

Export Citation Format

Share Document