New Frequency Domain–Based Inverse Ground Response Analysis Framework for the Determination of Dynamic Soil Properties

2021 ◽  
Vol 21 (5) ◽  
pp. 04021058
Author(s):  
Joy K. Mondal ◽  
Abhishek Kumar
2018 ◽  
Vol 9 (1) ◽  
pp. 78-98 ◽  
Author(s):  
Shiv Shankar Kumar ◽  
Arindam Dey ◽  
A. Murali Krishna

This article highlights the implication of site-specific properties on seismic ground response studies. One-dimensional equivalent linear ground response analysis was carried out using site-specific dynamic properties of locally available soils of Guwahati city, and the results are compared with those obtained using existing strain-dependent dynamic properties. Acceleration time histories from three strong motions were used. It was observed that an input motion having a higher peak bedrock acceleration, utilizing experimentally obtained dynamic soil properties, exhibits 38% and 24% lower peak ground acceleration and peak spectral acceleration, respectively, in comparison to the results obtained using standard VD-SI soil models. The amplification characteristics of the strong motions are observed to be significantly influenced by the degradation of damping ratio beyond 1% shear strain. The results highlight the necessity of conducting GRA of any region considering its regional dynamic soil properties to obtain more realistic outcomes.


2021 ◽  
pp. 875529302110013
Author(s):  
Nikolaos Ntritsos ◽  
Misko Cubrinovski ◽  
Brendon A Bradley

This article scrutinizes the determination of input motions for forensic ground-response analysis in the near-source region, based on recorded surface ground motions at strong-motion station sites, from the same event. The first part of the article draws upon observed ground motions from the 22 February 2011 6.2 Mw Christchurch earthquake to discuss key challenges of the problem associated with the strong spatial variation of ground motion in the near-source region. Effects from the complexity of the rupture, propagation of seismic waves through complex geological structures, and site characteristics are explored. It is argued that, because of the strongly varying source-path “signature” on near-source ground motions, “reference” input motions for ground-response analysis must be specific to, and have similar signature characteristics (be “compatible”) with, the target site which is subject to the analysis. The second part of the article presents a four-step procedure for the derivation of site-specific input motions involving (1) determination of the reference layer where the input motion is to be applied in the analysis, (2) record selection considering the appropriateness of the recording station site for deconvolution and its compatibility with the target site, (3) deconvolution of the selected record to remove local site effects from the recorded ground motion, and (4) scaling of the deconvolved motion to account for differences in the source-to-site distance between the recording station and the target site. As part of the proposed procedure, a novel (amplitude-duration) scaling method is presented. Results from one-dimensional (1D) effective-stress analysis of two target Christchurch sites using input motions from the proposed procedure are used to critically evaluate the procedure and discuss essential requirements for its successful application.


2020 ◽  
Vol 5 (1) ◽  
pp. 35-40
Author(s):  
Norazah Arjuna ◽  
Azlan Adnan ◽  
Nabilah Abu Bakar ◽  
Nabila Huda Aizon ◽  
Noor Sheena Herayani Harith

Earthquake is one of the natural disasters that is caused by ground shaking in soil. Ground response analysis is conducted to obtain the ground motion acceleration on soil surface. Conventional 1-D ground response analysis often suggests that soils are horizontally layered, with little consideration for heterogeneous distribution of soil properties. In this study, literature on 2-D ground response analysis studies has been study as it covers vertically and horizontally waves. Therefore, researcher works were presented in numerical modelling as substantial parameters for studies in near-surface structure. Besides, aspects for future research in the area 2-Dimensional Ground Response Analysis are included. The paper contributes to the under- standing of 2-Dimensional Ground Response Analysis for the application of seismic risk mitigation.


Sign in / Sign up

Export Citation Format

Share Document