Optimizing Cost and Maximizing Profit for Multi-Cloud-Based Big Data Computing by Deadline-Aware Optimize Resource Allocation

Author(s):  
Amitkumar Manekar ◽  
G. Pradeepini
2016 ◽  
Vol 11 (2) ◽  
pp. 252-264
Author(s):  
Weidong Qiu ◽  
Bozhong Liu ◽  
Can Ge ◽  
Lingzhi Xu ◽  
Xiaoming Tang ◽  
...  

CHANCE ◽  
2013 ◽  
Vol 26 (2) ◽  
pp. 28-32 ◽  
Author(s):  
Nicole Lazar

Author(s):  
Luiz Angelo Steffenel ◽  
Manuele Kirsch Pinheiro ◽  
Lucas Vaz Peres ◽  
Damaris Kirsch Pinheiro

The exponential dissemination of proximity computing devices (smartphones, tablets, nanocomputers, etc.) raises important questions on how to transmit, store and analyze data in networks integrating those devices. New approaches like edge computing aim at delegating part of the work to devices in the “edge” of the network. In this article, the focus is on the use of pervasive grids to implement edge computing and leverage such challenges, especially the strategies to ensure data proximity and context awareness, two factors that impact the performance of big data analyses in distributed systems. This article discusses the limitations of traditional big data computing platforms and introduces the principles and challenges to implement edge computing over pervasive grids. Finally, using CloudFIT, a distributed computing platform, the authors illustrate the deployment of a real geophysical application on a pervasive network.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Weihua Huang

Multiuser fair sharing of clusters is a classic problem in cluster construction. However, the cluster computing system for hybrid big data applications has the characteristics of heterogeneous requirements, which makes more and more cluster resource managers support fine-grained multidimensional learning resource management. In this context, it is oriented to multiusers of multidimensional learning resources. Shared clusters have become a new topic. A single consideration of a fair-shared cluster will result in a huge waste of resources in the context of discrete and dynamic resource allocation. Fairness and efficiency of cluster resource sharing for multidimensional learning resources are equally important. This paper studies big data processing technology and representative systems and analyzes multidimensional analysis and performance optimization technology. This article discusses the importance of discrete multidimensional learning resource allocation optimization in dynamic scenarios. At the same time, in view of the fact that most of the resources of the big data application cluster system are supplied to large jobs that account for a small proportion of job submissions, while the small jobs that account for a large proportion only use the characteristics of a small part of the system’s resources, the expected residual multidimensionality of large-scale work is proposed. The server with the least learning resources is allocated first, and only fair strategies are considered for small assignments. The topic index is distributed and stored on the system to realize the parallel processing of search to improve the efficiency of search processing. The effectiveness of RDIBT is verified through experimental simulation. The results show that RDIBT has higher performance than LSII index technology in index creation speed and search response speed. In addition, RDIBT can also ensure the scalability of the index system.


Author(s):  
Ewa Niewiadomska-Szynkiewicz ◽  
Michał P. Karpowicz

Progress in life, physical sciences and technology depends on efficient data-mining and modern computing technologies. The rapid growth of data-intensive domains requires a continuous development of new solutions for network infrastructure, servers and storage in order to address Big Datarelated problems. Development of software frameworks, include smart calculation, communication management, data decomposition and allocation algorithms is clearly one of the major technological challenges we are faced with. Reduction in energy consumption is another challenge arising in connection with the development of efficient HPC infrastructures. This paper addresses the vital problem of energy-efficient high performance distributed and parallel computing. An overview of recent technologies for Big Data processing is presented. The attention is focused on the most popular middleware and software platforms. Various energy-saving approaches are presented and discussed as well.


Sign in / Sign up

Export Citation Format

Share Document