This study presents the prehot corrosion effect on erosion behavior of AISI 446 SS in simulated heat exchanger environment at elevated temperature. Samples were spray deposited using two salt mixture (Na2SO4/NaCl). Subsequently, low-temperature hot corrosion tests were carried out at 550, 650, and 750 °C for 20 h. Chlorination followed by sulfidation was mainly responsible for the passive layer formation during the process of hot corrosion. The prehot corroded samples were subjected to air-jet erosion test using alumina as the erodent, at impact velocity of 100 m/s and flux rate of 4.2 g/min, with variable impingement angles of 30 deg, 60 deg, and 90 deg. The passive layer formed during corrosion underwent detachment of metallic flakes through cracking during the impact of erodent, and was responsible for a significant change in erosion rate. Cutting, plowing, lip formation, and particle embedment were identified as the operative mechanisms during erosion.