Gearbox Fault Diagnosis Under Variable Speed Condition Using Frequency Spectral Analysis with 1D Residual Neural Network

Author(s):  
Md Arafat Habib ◽  
Jong-Myon Kim
Measurement ◽  
2013 ◽  
Vol 46 (8) ◽  
pp. 2306-2312 ◽  
Author(s):  
Yu Yang ◽  
Huanhuan Wang ◽  
Junsheng Cheng ◽  
Kang Zhang

Author(s):  
Xuzhu Zhuang ◽  
Chen Yang ◽  
Jianhua Yang ◽  
Chengjin Wu ◽  
Zhen Shan ◽  
...  

The fault characteristic of rolling bearings under variable speed condition is a typical non-stationary stochastic signal. It is difficult to extract due to the interference of strong background noise makes the applicability of traditional noise reduction methods less. In this paper, an aperiodic stochastic resonance (ASR) method is proposed to study the fault diagnosis of rolling bearings under variable speed conditions. Based on numerical simulation, the effect of noise intensity and damping coefficient on the ASR of the second-order underdamped system is discussed, and an appropriate damping coefficient is found to reach the optimal ASR. The proposed method enhances the fault characteristic information of bearing fault simulation signal. Corresponding to rising-stationary and the stationary-declining running conditions, the method is verified by both simulated and experimental signals. It provides reference for fault diagnosis under variable speed condition.


2021 ◽  
Vol 11 (16) ◽  
pp. 7575
Author(s):  
Cong Dai Nguyen ◽  
Zahoor Ahmad ◽  
Jong-Myon Kim

This paper proposes an accurate and stable gearbox fault diagnosis scheme that combines a localized adaptive denoising technique with a wavelet-based vibration imaging approach and a deep convolution neural network model. Vibration signatures of a gearbox contain important fault-related information. However, this useful fault-related information is often overwhelmed by random interference noises. Furthermore, the varying speed of gearboxes makes it difficult to distinguish the fault-related frequencies from the interference noises. To obtain a noise-free signal for extraction of fault-related information under variable speed conditions, first, a new localized adaptive denoising technique (LADT) is applied to the vibration signal. The new localized adaptive denoising technique results in optimized vibration sub-bands with negligible background noise. To obtain fault-related information, the wavelet-based vibration imaging approach (WVI) is applied to the denoised vibration signal. The wavelet-based vibration imaging approach decomposes the vibration signal into different time–frequency scales, these scales are reflected by a two-dimensional image called a scalogram. The scalograms obtained from the wavelet-based vibration imaging approach are provided as an input to the deep convolutional neural network architecture (DCNA) for extraction of discriminant features and classification of multi-degree tooth faults (MDTFs) in a gearbox under variable speed conditions. The proposed scheme outperforms the already existing state-of-the-art gearbox fault diagnosis methods with the highest classification accuracy of 100%.


Sign in / Sign up

Export Citation Format

Share Document