fault characteristic
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 50)

H-INDEX

9
(FIVE YEARS 4)

Author(s):  
Lingli Jiang ◽  
LI Shuhui ◽  
LI Xuejun ◽  
Jiale Lei ◽  
YANG Dalian

Abstract The vibration signals of a planetary gearbox have the characteristics of strong background noise and instability and are non-Gaussian. Bi-spectrums can suppress Gaussian colored noise and are suitable for vibration signal processing of planetary gearboxes. In the traditional fault diagnosis methods based on bi-spectrums, the fault characteristic frequency amplitudes of bi-spectrum or bi-spectrum slices, or the further quantitative calculations of fault characteristic values, are generally used as the basis of fault diagnosis processes. It has been found that bi-spectrum images can directly characterize the faults of the planetary gearboxes. Convolutional neural networks (CNNs) have been used in mechanical fault diagnoses in recent years. One-dimensional original signals are converted into two-dimensional images as CNN input, which is an effective method for mechanical fault diagnoses. At the present time, there has not been any relevant research conducted using bi-spectral images as CNN input. In this study, a fault diagnosis method based on local bi-spectrum and CNN was proposed. A bi-spectral analysis of the vibration signals of the planetary gearbox was first carried out in order to reveal the fault information while retaining the non-Gaussian information. Then, according to the bi-spectrum symmetry, local images containing the entire domain information were taken as the input of the CNN, which reduced the redundancy of the fault information. Then, in order to improve the diagnostic accuracy of the CNN, the key parameters of CNN architecture were optimized. Finally, a CNN diagnosis model was built to realize the classification diagnoses of different fault positions and different fault degrees of planetary gearboxes. This study’s comparison of the diagnosis results of the full bi-spectrum+CNN, local bi-spectrum+SVM, original vibration signal+CNN, and local bi-spectrum+BP neural networks showed that the method proposed in this study had achieved both accuracy and rapidity in the fault diagnoses of planetary gearboxes.


2021 ◽  
Vol 12 (2) ◽  
pp. 120-124
Author(s):  
Michael Timothy Tasliman ◽  
Hongsik Yun

On 11 March 2011, a great earthquake with magnitude 9.0 has occurred in Tohoku, Japan, more than 1,000 km from South Korea. In fact, seismicity rate in South Korea has increased since the 2011 Tohoku earthquake, although detailed evaluation of its effects on the Korean Peninsula remains incomplete. Now, the high precision space geodesy techniques play a key role in monitoring the crustal strain state and energy variation. This study attempts to evaluate crustal deformation around the Korean Strait after 2011 Tohoku earthquake through a detailed analysis recorded by GPS. Moreover, this study found a different fault characteristic in Japan affect the station displacement prior to GPS data observed among 2011 to 2012. After a year, the strain in Japan found in direction WNW-ESE, while in Korea found in direction WSW-ENE. This finding suggests the likelihood of the existence of a certain tectonic line between the southern part of Korea peninsula and Japan.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 275
Author(s):  
Di Xu ◽  
Jianghua Ge ◽  
Yaping Wang ◽  
Junpeng Shao

In engineering practice, the bearing fault signal is composed of a series of complex multi-component signals containing multiple fault characteristics information. In the early stage of fault sprouting and evolution, the fault features are easily disturbed by noise and irrelevant signals, eliminating the fault signals in the strong background noise. To overcome the influence of noise on the signal, this study proposes multi-frequency weak signal decomposition and reconstruction of rolling bearing based on adaptive cascaded stochastic resonance. First, the original signal is passed through the Hilbert transform to obtain the envelope signal. The envelope signal is high-pass filtered to eliminate the interference of low-frequency components on the response of the stochastic resonance system. Secondly, cascaded stochastic resonance system parameters are adaptively optimized by the quantum particle swarm algorithm (QPSO). The high-pass filtered signal input to the adaptive cascaded stochastic resonance system (ACSRS) can further enhance the weak fault characteristics, allowing the gradual transfer of high-frequency noise energy to the low-frequency fault characteristic components. Finally, the signal is decomposed using the variational mode decomposition (VMD) method to jointly determine the location of the fault characteristic frequencies in the intrinsic mode functions (IMF) component by the energy loss coefficient and correlation coefficient to achieve the reconstruction of multi-frequency weak signals. Through simulation and experimental validation, the effectiveness and superiority of the method for multi-frequency weak signal detection in bearings are verified. The results show that the method not only achieves the adaptive optimization of the stochastic resonance system parameters gradually removing the high-frequency noise in the signal and improving the energy of the low-frequency signal but also reduces the number of decomposition layers of the VMD, enhances the fault characteristic information in the weak signal, and effectively identifies the early weak fault characteristics of rolling bearings.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012007
Author(s):  
Jian'gang Chen ◽  
Zhi Luo ◽  
Ronggen Wu ◽  
Haiyang Cai

Abstract The fault characteristic signal energy for early gear tooth breakage is relatively weak and easily drowned by other signals, which is not conducive to the study of the fault development stage. A multi-order modulated sideband RMS (Root Mean Square) trend analysis method is proposed to analyse the development trend of the broken gear fault characteristics. By using this method to analyse gear breakage faults, the multi-order modulated sideband RMS trend analysis method can effectively determine the fault deterioration and fault stabilisation stages.


Author(s):  
Xuzhu Zhuang ◽  
Chen Yang ◽  
Jianhua Yang ◽  
Chengjin Wu ◽  
Zhen Shan ◽  
...  

The fault characteristic of rolling bearings under variable speed condition is a typical non-stationary stochastic signal. It is difficult to extract due to the interference of strong background noise makes the applicability of traditional noise reduction methods less. In this paper, an aperiodic stochastic resonance (ASR) method is proposed to study the fault diagnosis of rolling bearings under variable speed conditions. Based on numerical simulation, the effect of noise intensity and damping coefficient on the ASR of the second-order underdamped system is discussed, and an appropriate damping coefficient is found to reach the optimal ASR. The proposed method enhances the fault characteristic information of bearing fault simulation signal. Corresponding to rising-stationary and the stationary-declining running conditions, the method is verified by both simulated and experimental signals. It provides reference for fault diagnosis under variable speed condition.


2021 ◽  
Vol 2023 (1) ◽  
pp. 012023
Author(s):  
Shuyu Teng ◽  
Jun Li ◽  
Shiqi He ◽  
Binglong Fan ◽  
Shaofei Hu

Sign in / Sign up

Export Citation Format

Share Document