Numerical Modeling of Honeycombed Geocell Reinforced Soil

Author(s):  
Mushriq F. K. AL-Shamaa ◽  
Ammar A. Sheikha ◽  
Mahdi O. Karkush ◽  
Mohammed S. Jabbar ◽  
Ayad A. Al-Rumaithi
2021 ◽  
Vol 11 (4) ◽  
pp. 1426
Author(s):  
Hung Van Pham ◽  
Daniel Dias

This paper is based on small-scale laboratory tests (1:10) of a rigid inclusion-improved soil under normal gravity. A low area improvement ratio (2.4%) under monotonic and cyclic loading was used. 3D numerical calculations are performed to model these tests. The proposed numerical modeling is performed by the finite element method (FEM) using the ABAQUS software. A representative elementary volume model is suggested for reducing the calculation time. A hypoplastic constitutive model (HYP model) is applied for the load transfer platform (LTP). A total of three geometrical configuration cases of the experimental tests are numerically considered including a rigid slab over a mattress of 100 mm on the reinforced soil, a mattress of 100 mm on the reinforced soil, and a rigid slab over a mattress of 50 mm on the reinforced soil. The proposed numerical results are compared to the experimental data and the previous numerical results of Houda. The cyclic response of the systems is shown in terms of soil arching and settlements. The decrease in pile efficacy and the cumulative settlements are exhibited. The HYP model allows to better simulate the soil arching mechanisms inside the LTP than the CYsoil model used in the Houda’s research work. A good concordance between the proposed numerical results and the experimental data was obtained.


2007 ◽  
Author(s):  
T. Campbell ◽  
B. de Sonneville ◽  
L. Benedet ◽  
D. J. W. Walstra ◽  
C. W. Finkl

Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


Sign in / Sign up

Export Citation Format

Share Document