EPS Geofoam Pavement Foundations Overlaid by Geocell-Reinforced Soil under Static Loading: Large-Scale Tests and Numerical Modeling

2021 ◽  
Vol 33 (4) ◽  
pp. 04021014
Author(s):  
S. N. Moghaddas Tafreshi ◽  
S. M. A. Ghotbi Siabil ◽  
Mehran Azizian
Author(s):  
Gholam H. Roodi ◽  
Amr M. Morsy ◽  
Jorge. G. Zornberg

Geosynthetics have been used to improve mechanical performance of roadway layers (e.g., geosynthetic-reinforced asphalt, geosynthetic-stabilized bases) and a wide range of transportation infrastructures (e.g., geosynthetic-reinforced soil walls). A key aspect in understanding soil–geosynthetic interaction mechanisms involved in each application includes characterization of the interface between geosynthetics and adjacent materials. This study evaluates soil–geosynthetic interface shear in various pullout test scales including standard, smaller than standard, and larger than standard scales. Experimental results obtained from tests conducted in each scale were analyzed to determine the soil–geosynthetic interface shear model. An iteration procedure, similar to that used in t–z analysis of pile loading, was developed to simulate incremental geosynthetic movements. Shape and parameters of the interface shear model were changed to minimize the residual error between experimental and simulated data. It was found that mobilization of the interface shear in the small-scale test differs from that in the standard- and large-scale tests. In the standard- and large-scale tests, the ultimate soil–geosynthetic interface shear mobilized at comparatively small displacements, which could be represented by a linear plastic interface shear model. In the small-scale test, however, the interface shear developed in two phases. A portion of the ultimate interface shear mobilized at comparatively small displacements while additional resistance continued to mobilize at extended displacements. Consequently, the development of interface shear resistance in the standard- and large-scale tests was found to depend on progressive increase of the geosynthetic mobilized length, whereas in the small-scale test the interface shear resistance developed by displacement of the entire geosynthetic.


2002 ◽  
Vol 28 (11) ◽  
pp. 1763-1785 ◽  
Author(s):  
Gustavo C. Buscaglia ◽  
Fabián A. Bombardelli ◽  
Marcelo H. Garcı́a

2018 ◽  
Vol 61 ◽  
pp. 1-37 ◽  
Author(s):  
Paola F. Antonietti ◽  
Alberto Ferroni ◽  
Ilario Mazzieri ◽  
Roberto Paolucci ◽  
Alfio Quarteroni ◽  
...  

We present a comprehensive review of Discontinuous Galerkin Spectral Element (DGSE) methods on hybrid hexahedral/tetrahedral grids for the numerical modeling of the ground motion induced by large earthquakes. DGSE methods combine the exibility of discontinuous Galerkin meth-ods to patch together, through a domain decomposition paradigm, Spectral Element blocks where high-order polynomials are used for the space discretization. This approach allows local adaptivity on discretization parameters, thus improving the quality of the solution without affecting the compu-tational costs. The theoretical properties of the semidiscrete formulation are also revised, including well-posedness, stability and error estimates. A discussion on the dissipation, dispersion and stability properties of the fully-discrete (in space and time) formulation is also presented. Here space dis-cretization is obtained based on employing the leap-frog time marching scheme. The capabilities of the present approach are demonstrated through a set of computations of realistic earthquake scenar-ios obtained using the code SPEED (http://speed.mox.polimi.it), an open-source code specifically designed for the numerical modeling of large-scale seismic events jointly developed at Politecnico di Milano by The Laboratory for Modeling and Scientific Computing MOX and by the Department of Civil and Environmental Engineering.


2000 ◽  
Vol 132 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Gary L. DeBarr ◽  
James L. Hanula ◽  
Christine G. Niwa ◽  
John C. Nord

AbstractSynthetic sex pheromones released in a loblolly pine, Pinus taeda L. (Pinaceae), seed orchard interfered with the ability of male coneworm moths, Dioryctria Zeller spp. (Lepidoptera: Pyralidae), to locate traps baited with sex pheromones or live females. Pherocon 1C® traps baited with synthetic pheromones or live conspecific females were hung near the center of two 1.2-ha circular plots during emergence of Dioryctria amatella (Hulst), Dioryctria disclusa (Heinrich), and Dioryctria merkeli (Mutuura and Munroe). In a paired design, trap catches for the mating-disruption treatment with synthetic pheromone dispensers consisting of three polyvinyl chloride rods placed in every tree were compared with the control treatment. Treatments were alternated at intervals of 2–3 d. Trap catches of D. amatella were reduced by 91% when plots were treated with 2.5 g/ha of Z-11-hexadencenyl acetate. Catches were reduced by 99.5% for D. disclusa and by 97% for D. merkeli when plots were treated with 12.5 g/ha of Z-9-tetradecenyl acetate, whereas catches of D. amatella were unaffected by this mating-disruption treatment. Daily disappearance of Z-9-tetradecenyl acetate from the dispensers averaged 0.46 g/ha or less. Manually placing dispensers on nylon lines in the tops of trees was an effective method for releasing synthetic Dioryctria pheromones in the orchard. These data suggest it may be feasible to prevent mating of Dioryctria spp. in pine seed orchards by using synthetic pheromones for mating disruption, but large-scale tests will be required to demonstrate cone protection.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
YanQun Zhou ◽  
YeZhi Zhang ◽  
MeiXin Ye ◽  
MengSi Zhan

The seismic behavior and plasticity spreading of a neotype column-slab high pier are researched in this paper. Four scale model tests of a web slab with two boundary columns are carried out under cyclic inelastic lateral displacements simulating seismic response. The test results show that the neotype column-slab high pier has strong and stable bearing capacity, good ductility, and energy dissipation capacity. The experimental values pertaining to the spread of plasticity are derived. An approach for deriving the spread of plasticity analytically is deduced and applied to the four tests. This method accurately assesses a pier’s spread of plasticity for most ductility levels. At nearly all ductility levels, the mean difference between analytical assessments of the spread of plasticity and results from 4 large-scale tests is 12% with a 9% coefficient of variation.


2021 ◽  
Author(s):  
Rabin Bhattarai ◽  
◽  
Yufan Zhang ◽  
Jacob Wood ◽  
◽  
...  

Construction activities entail substantial disturbance of topsoil and vegetative cover. As a result, stormwater runoff and erosion rates are increased significantly. If the soil erosion and subsequently generated sediment are not contained within the site, they would have a negative off-site impact as well as a detrimental influence on the receiving water body. In this study, replicable large-scale tests were used to analyze the ability of products to prevent sediment from exiting the perimeter of a site via sheet flow. The goal of these tests was to compare products to examine how well they retain sediment and how much ponding occurs upstream, as well as other criteria of interest to the Illinois Department of Transportation. The products analyzed were silt fence, woven monofilament geotextile, Filtrexx Siltsoxx, ERTEC ProWattle, triangular silt dike, sediment log, coconut coir log, Siltworm, GeoRidge, straw wattles, and Terra-Tube. Joint tests and vegetated buffer strip tests were also conducted. The duration of each test was 30 minutes, and 116 pounds of clay-loam soil were mixed with water in a 300 gallon tank. The solution was continuously mixed throughout the test. The sediment-water slurry was uniformly discharged over an 8 ft by 20 ft impervious 3:1 slope. The bottom of the slope had a permeable zone (8 ft by 8 ft) constructed from the same soil used in the mixing. The product was installed near the center of this zone. Water samples were collected at 5 minute intervals upstream and downstream of the product. These samples were analyzed for total sediment concentration to determine the effectiveness of each product. The performance of each product was evaluated in terms of sediment removal, ponding, ease of installation, and sustainability.


Author(s):  
Wouter Ockeloen ◽  
Coen Kuiper ◽  
Sjoerd van den Steen

The 'Afsluitdijk' is a 32 km enclosure dam which separates the Wadden sea and the Lake IJssel. The dam currently undergoes a major rehabilitation to meet the requirements with regard to water safety. The Dutch Ministry of infrastructure and Water Management (Rijkswaterstaat division) has commissioned Levvel, a consortium of BAM, Van Oord and Rebel, to prepare the design and carry out the reconstruction of the dam including sluices and highway. The project includes reinforcement of the armour layers and wave overtopping reduction. As part of the contract Rijkswaterstaat prescribed the contractor (Levvel) to verify the design with large scale physical model tests (min. 1:3 scale). These tests were carried out in the Delta Flume of Deltares. Prior to the large scale tests, smaller scale tests (1:20) have been carried out to optimize the design with regard to armour stability and wave overtopping. The research described here focuses on the wave overtopping.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/kPga0wVCCIE


2011 ◽  
Vol 1 (32) ◽  
pp. 65
Author(s):  
Thomas Lykke Andersen ◽  
Peter Frigaard ◽  
Michael R Rasmussen ◽  
Luca Martinelli

The present paper deals with loads on wind turbine access platforms. The many planned new wind turbine parks together with the observed damages on platforms in several existing parks make the topic very important. The paper gives an overview of recently developed design formulae for different types of entrance platforms. Moreover, the paper present new results on loads on grates based on both drag coefficient measurements and preliminary results on slamming from large scale tests. As expected both investigations show that platforms with grates give a significant reduction in the loads compared to closed plate platforms. The grate multiplication factor, defined as the peak load on the grate platform relative to the peak load on a closed plate platform was found approximately equal to the solidity of the grate.


Sign in / Sign up

Export Citation Format

Share Document