Comparative Study of Maturation Profiles of Neural Cells in Different Species with the Help of Computer Vision and Deep Learning

Author(s):  
Hritam Basak ◽  
Rohit Kundu
Author(s):  
Hmidi Alaeddine ◽  
Malek Jihene

Deep Learning is a relatively modern area that is a very important key in various fields such as computer vision with a trend of rapid exponential growth so that data are increasing. Since the introduction of AlexNet, the evolution of image analysis, recognition, and classification have become increasingly rapid and capable of replacing conventional algorithms used in vision tasks. This study focuses on the evolution (depth, width, multiple paths) presented in deep CNN architectures that are trained on the ImageNET database. In addition, an analysis of different characteristics of existing topologies is detailed in order to extract the various strategies used to obtain better performance.


Author(s):  
Utkarsha Kumbhar ◽  
Prof. A. S. Shingare

For the past few years, gender and age detection has been an active area of study and researchers have been putting a lot of effort to contribute quality research in this area. Starting from preprocessing of data to building a model which gives high precision results is tedious task for researchers. There is a immense dormant field of study as it can be used in monitoring, surveillance, human-computer interaction and security. However, there is still a lack of the performance of existing methods on real live images. Many difficult tasks such as computer vision, speech recognition, and natural language processing are easily solved with deep learning. Therefore, the approach of deep learning remarkably growing and this also takes place in image classification. Therefore, to analyses and focuses on comparative study of different algorithms for gender and age recognition system to give elevated degree of precision is required.


2021 ◽  
Vol 109 (5) ◽  
pp. 863-890
Author(s):  
Yannis Panagakis ◽  
Jean Kossaifi ◽  
Grigorios G. Chrysos ◽  
James Oldfield ◽  
Mihalis A. Nicolaou ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Shuo Zhou ◽  
Xiujuan Chai ◽  
Zixuan Yang ◽  
Hongwu Wang ◽  
Chenxue Yang ◽  
...  

Abstract Background Maize (Zea mays L.) is one of the most important food sources in the world and has been one of the main targets of plant genetics and phenotypic research for centuries. Observation and analysis of various morphological phenotypic traits during maize growth are essential for genetic and breeding study. The generally huge number of samples produce an enormous amount of high-resolution image data. While high throughput plant phenotyping platforms are increasingly used in maize breeding trials, there is a reasonable need for software tools that can automatically identify visual phenotypic features of maize plants and implement batch processing on image datasets. Results On the boundary between computer vision and plant science, we utilize advanced deep learning methods based on convolutional neural networks to empower the workflow of maize phenotyping analysis. This paper presents Maize-IAS (Maize Image Analysis Software), an integrated application supporting one-click analysis of maize phenotype, embedding multiple functions: (I) Projection, (II) Color Analysis, (III) Internode length, (IV) Height, (V) Stem Diameter and (VI) Leaves Counting. Taking the RGB image of maize as input, the software provides a user-friendly graphical interaction interface and rapid calculation of multiple important phenotypic characteristics, including leaf sheath points detection and leaves segmentation. In function Leaves Counting, the mean and standard deviation of difference between prediction and ground truth are 1.60 and 1.625. Conclusion The Maize-IAS is easy-to-use and demands neither professional knowledge of computer vision nor deep learning. All functions for batch processing are incorporated, enabling automated and labor-reduced tasks of recording, measurement and quantitative analysis of maize growth traits on a large dataset. We prove the efficiency and potential capability of our techniques and software to image-based plant research, which also demonstrates the feasibility and capability of AI technology implemented in agriculture and plant science.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 343
Author(s):  
Kim Bjerge ◽  
Jakob Bonde Nielsen ◽  
Martin Videbæk Sepstrup ◽  
Flemming Helsing-Nielsen ◽  
Toke Thomas Høye

Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.


Author(s):  
Romain Thevenoux ◽  
Van Linh LE ◽  
Heloïse Villessèche ◽  
Alain Buisson ◽  
Marie Beurton-Aimar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document