Characterisation of Steady Flow Regime and Drag Force on the Forward and Backward Facing Trapezoidal Cylinders: A Numerical Study

Author(s):  
Akash Bhunia ◽  
Prabir Sikdar ◽  
Sunil Manohar Dash ◽  
Kim Boon Lua
2006 ◽  
Vol 84 (4) ◽  
pp. 253-271 ◽  
Author(s):  
M Hossein Partovi ◽  
Eliza J Morris

The popular demonstration involving a permanent magnet falling through a conducting pipe is treated as an axially symmetric boundary-value problem. Specifically, Maxwell's equations are solved for an axially symmetric magnet moving coaxially inside an infinitely long, conducting cylindrical shell of arbitrary thickness at nonrelativistic speeds. Analytic solutions for the fields are developed and used to derive the resulting drag force acting on the magnet in integral form. This treatment represents a significant improvement over existing models, which idealize the problem as a point dipole moving slowly inside a pipe of negligible thickness. It also provides a rigorous study of eddy currents under a broad range of conditions, and can be used for magnetic braking applications. The case of a uniformly magnetized cylindrical magnet is considered in detail, and a comprehensive analytical and numerical study of the properties of the drag force is presented for this geometry. Various limiting cases of interest involving the shape and speed of the magnet and the full range of conductivity and magnetic behavior of the pipe material are investigated and corresponding asymptotic formulas are developed.PACS Nos.: 81.70.Ex, 41.20.–q, 41.20.Gz


2020 ◽  
Vol 213 ◽  
pp. 107511 ◽  
Author(s):  
Shan Ma ◽  
De-kang Xu ◽  
Wen-yang Duan ◽  
Ji-kang Chen ◽  
Kang-ping Liao ◽  
...  

Author(s):  
Jonathan J. Bevan ◽  
Jonathan H. B. Deane

This is a theoretical and numerical study of a model of a rope fountain subject to a drag force that depends linearly on the rope velocity. A precise, analytical description of the long-term shape adopted by the rope is given, and various consequences are derived from it. Using parameters that naturally appear in the model, we distinguish between cases wherein energy is conserved by means of a constant tension far from the rope source (the ‘free’ case) and where energy conservation is a consequence of a non-constant tension (the ‘braked’ case). The model is used, among other things, to generate rope fountain shapes based on approximate experimental estimates of the parameter values and a careful numerical treatment.


2013 ◽  
Vol 561 ◽  
pp. 472-477 ◽  
Author(s):  
Dong Xing Du ◽  
Fa Hu Zhang ◽  
Dian Cai Geng ◽  
Ying Ge Li

Straight ducts capture some essential features of the motion of foam in porous media in petroleum industry. In this paper, Surface Evolver was employed to build the mathematical model to study the flow behavior of lamellas in the duct with different models. Numerical results show good agreement with experiments and some important features of lamella flow behavior in straight ducts are obtained. It is concluded that, the physical model with viscous force can adequately describe the flow characteristics of reality foam in the experiment. The actual pressure difference consists of the pressure difference caused by the curvature of the lamellas and the drag force on the boundary wall. Under the ideal condition of without drag force along the wall, the pressure drop for lamella flow in the duct is zero, and the shape and the velocity of the lamellas will maintain constant.


1982 ◽  
Vol 260 ◽  
pp. 755 ◽  
Author(s):  
R. F. Stellingwerf ◽  
J. Buff

Sign in / Sign up

Export Citation Format

Share Document