point dipole
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 28)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 2015 (1) ◽  
pp. 012003
Author(s):  
Rajan Agrahari ◽  
Hadi K. Shamkhi

Abstract A highly directive dielectric nanoantenna in an integrated chip may enable faster communication as their low losses and small size overcome the limitation of temperature enhancement and low data transfer rate. We optimize nanoantenna consist of Si-nanoblock in the near-infrared region to efficiently transfer a point dipole light to a highly directive light in the far-field region. We engineer the intrinsic electric and magnetic resonances of a Si-block nanoantenna by modifying and reducing its geometrical symmetry. We realize a pronounced enhancement of directivity by systematically inducing perturbation in the Silicon block so that both its reflection and rotational symmetries are broken. Finally, we retain the traditional method to increase resonance’s coupling to outer space by introducing substrate with an increasing refractive index. We find that the directivity has boosted rapidly.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gianni Q. Moretti ◽  
Emiliano Cortés ◽  
Stefan A. Maier ◽  
Andrea V. Bragas ◽  
Gustavo Grinblat

Abstract Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼ 2 W−1 and ∼ 60 W−2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.


2021 ◽  
Author(s):  
C. Annie Hart ◽  
Justin Lyle ◽  
Joseph Spellberg ◽  
Anna I. Krylov ◽  
Richard Mabbs

The importance of including long-range electron-molecule interactions in treatments of photodetachment/photoionization is demonstrated. A combined experimental and computational study of CN− detachment is presented in which near threshold anisotropy parameters (β) are measured via photoelectron imaging. Calculated β values, based on an EOM-IP-CCSD/aug-cc-pVTZ Dyson orbital, are obtained using free particle and point dipole models. The results demonstrate the influence of the molecular dipole moment in the detachment process, and provide an explanation of the near threshold behavior of the overall photodetachment cross section in CN− detachment [J. Chem. Phys. 2020, 153, 184309]


2021 ◽  
Vol 18 (2 Jul-Dec) ◽  
pp. 020205
Author(s):  
Milan S. Kovacevic ◽  
Miroslav R. Jovanovic ◽  
Marko M. Milosevic

The Dirac delta function is a concept that is useful throughout physics as a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum including electrodynamics, optics, and quantum mechanics. Our analysis was guided by an analytical framework focusing on how students activate, construct, execute, and reflect on the Dirac delta function in the context of classical electrodynamics problems solving. It’s applications in solving the charge density associated with a point charge as well as electrostatic point dipole field, for more advanced situations to describe the charge density of hydrogen atom were presented.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Evgeny G. Fateev

On the basis of a previously developed model of disperse systems containing non-point dipole particles self-assembled into chains inside a liquid substrate, the decay time of electrical excitations induced in dipoles by an external field is investigated. It was shown that when the external field is completely turned off (from 10−6 V / m to 106 V / m levels) at biologically significant low frequencies (for example, 13 Hz), the decay time of the excitations of nanoscale dipoles nonlinearly depends on the chain length. It was found that the decay time of excitations increases sharply (by four to five orders of magnitude), with an increase in the chain length more than 19–20 dipoles.


2020 ◽  
Vol 224 (1) ◽  
pp. 468-486
Author(s):  
Mick Emil Kolster ◽  
Arne Døssing

SUMMARY During scalar magnetic surveys, where the amplitude of the magnetic field is measured, small changes in towed sensor positions can produce complex noise-resembling signals in the data. For well-constructed measurement systems, these signals often contain valuable information, rather than noise, but it can difficult to realize their potential. We present a simple, general approach, which can be used to directly invert data from scalar magnetic surveys, regardless of dynamic or unexpected sensor position variations. The approach generalizes classic along-track gradients to an iterative, or recursive, difference, that can be applied irrespective of the amount of magnetic sensors and their positions within a dynamic measurement system, as long as these are known. The computed difference can be inverted directly, providing a versatile method with very little data pre-processing requirements, which we denote as recursive difference inversion. We explain the approach in a general setting, and expand it to provide a complete framework for Unexploded Ordnance (UXO) detection using a point-dipole model. Being an extension of classic along-track gradients, the method retains many of the same properties, which include added robustness to external time-dependent disturbances, and the ability to produce aesthetic visual data representations. In addition, the framework requires neither tie lines, data levelling, nor diurnal corrections. Only light pre-processing actions, namely initial survey trimming and data position calculation, are required. The method is demonstrated on data from a dual sensor system, conventionally referred to as a vertical gradiometer, which is towed from an Unmanned Aerial Vehicle. The system enables collection of high-quality magnetic data in adverse settings, and simultaneously reduces the risk of inadvertent UXO detonations. To enable qualitative testing, we established a UXO detection test facility with several buried UXO, typical to World War II, in a magnetically complex in-land area. Data from the test facility was mainly used to evaluate inversion robustness and depth accuracy of the point-dipole model. Subsequently, we apply the method to real UXO survey data collected for the Hornsea II offshore wind farm project in the United Kingdom. This data set was collected in a coastal setting, and subject to significant sensor position changes during flight due to varying wind conditions over multiple survey days. This makes the raw data set challenging to interpret directly, but it can still be easily and reliably inverted for source locations through recursive difference inversion. In each of the two data sets, we attempt to recover UXO positions using recursive difference inversion on data from both a single sensor, as well as on data from two synchronized sensors, in each case inverting the difference directly for point-dipole model parameters. To seed the inversion, we propose a simple routine for picking out potential targets, based on the choice of a significant peak prominence in the time-series of computed differences. Higher order difference inversion was found to provide robust results in the magnetically complex setting, and the recovered equivalent dipole depths were found to approximate the actual UXO depths well.


Sign in / Sign up

Export Citation Format

Share Document