Evaluation of Image Filtering Parameters for Plant Biometrics Improvement Using Machine Learning

Author(s):  
Taiwo Olaleye ◽  
Oluwasefunmi Arogundade ◽  
Cecelia Adenusi ◽  
Sanjay Misra ◽  
Abosede Bello
Author(s):  
Vinh-Thong Ta ◽  
Olivier Lézoray ◽  
Abderrahim Elmoataz

The authors present an overview of part of their work on graph-based regularization. Introduced first in order to smooth and filter images, the authors have extended these methods to address semi-supervised clustering and segmentation of any discrete domain that can be represented by a graph of arbitrary structure. This framework unifies, within a same formulation, methods from machine learning and image processing communities. In this chapter, the authors propose to show how these graph-based approaches can lead to a useful set of tools that can be combined altogether to address various image processing problems in pathology such as cytological and histological image filtering, segmentation and classification.


Author(s):  
Sevan Harput ◽  
Enrico Grisan ◽  
Chris Dunsby ◽  
Meng-Xing Tang ◽  
Long Hin Fong ◽  
...  

2021 ◽  
Author(s):  
Erhan Coşkun ◽  
Torran Elson ◽  
Sean Lim ◽  
James Mathews ◽  
Gruff Morris ◽  
...  

CrowdEmotion produce software to measure a person's emotions based on analysis of microfacial expressions using a machine learning algorithm to recognize which features correspond with which emotions. The features are derived by applying a bank of Gabor filters to a set of frames. CrowdEmotion needed to improve the accuracy, processing speed and cost-efficiency of the tool. In particular they wanted to know if a subset of the bank of Gabor filters was sufficient, and whether the image filtering stage could be implemented on a GPU. A framework for choosing the optimum set of Gabor filters was established and ways of reducing the dimensionality of this were interrogated. Taking a subset of Local Binary Patterns was found to be fully justified. Meanwhile choosing a gridding pattern is open to interpretation; some suggestions were made about how this choice might be improved.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Man-Wai Mak ◽  
Jen-Tzung Chien

2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document