Impact of Conservation Agriculture and Residue Management on Soil Properties Under Sugarcane-Based Cropping Systems

2021 ◽  
pp. 239-266
Author(s):  
Yogeshwar Singh ◽  
R. L. Choudhary ◽  
Amresh Chaudhary ◽  
Nilesh More ◽  
N. P. Singh
2021 ◽  
pp. 117-137
Author(s):  
K. Mrunalini ◽  
Somasundaram Jayaraman ◽  
Ch. Srinivasa Rao ◽  
C. S. Praharaj ◽  
N. P. Singh ◽  
...  

Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 539 ◽  
Author(s):  
R. Michael Lehman ◽  
Shannon L. Osborne ◽  
Kimberly McGraw

Linking agricultural management tactics to quantifiable changes in soil health-related properties is a key objective for increasing adoption of the most favorable management practices. We used two long-term, no-till cropping studies to illustrate the variable patterns of response of soil structure indices and microbial activity to additional management tactics, including crop rotational diversity, residue management and cover cropping. We found that observable effects of management tactics on soil properties were often dependent on the current crop phase sampled, even though the treatments were well-established. In some cases, a single additional management tactic produced a response, two tactics each produced a response and sometimes there were interactions between tactics. However, importantly, we never observed a negative effect for any of the response variables when stacking soil health building practices in no-till cropping systems. The collective results from the two field studies illustrate that soil health improvements with stacking management tactics are not always simply additive and are affected by temporal relationships inherent to the treatments. We conclude that the implementation of multiple positive management tactics increases the likelihood that improvements in soil properties can be documented with one or more of the proxy measures for soil health.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 295 ◽  
Author(s):  
Julián Cuevas ◽  
Ioannis N. Daliakopoulos ◽  
Fernando del Moral ◽  
Juan J. Hueso ◽  
Ioannis K. Tsanis

A major challenge of the Sustainable Development Goals linked to Agriculture, Food Security, and Nutrition, under the current global crop production paradigm, is that increasing crop yields often have negative environmental impacts. It is therefore urgent to develop and adopt optimal soil-improving cropping systems (SICS) that can allow us to decouple these system parameters. Soil salinization is a major environmental hazard that limits agricultural potential and is closely linked to agricultural mismanagement and water resources overexploitation, especially in arid climates. Here we review literature seeking to ameliorate the negative effect of soil salinization on crop productivity and conduct a global meta-analysis of 128 paired soil quality and yield observations from 30 studies. In this regard, we compared the effectivity of different SICS that aim to cope with soil salinization across 11 countries, in order to reveal those that are the most promising. The analysis shows that besides case-specific optimization of irrigation and drainage management, combinations of soil amendments, conditioners, and residue management can contribute to significant reductions of soil salinity while significantly increasing crop yields. These results highlight that conservation agriculture can also achieve the higher yields required for upscaling and sustaining crop production.


2018 ◽  
Vol 10 (5) ◽  
pp. 100
Author(s):  
John S. K. Banda ◽  
Alice M. Mweetwa ◽  
Munsanda Ngulube ◽  
Elijah Phiri

The paper reports findings from an evaluation of the effects of selected chemical and biological properties of soils under maize-cowpea cropping systems in Conservation Agriculture (CA) and their relationship to biological nitrogen fixation capabilities of cowpea. Soils from Kayowozi Agriculture Camp of Chipata District of Zambia where CA had been practiced for six years were evaluated. Cropping systems studied included conventional tillage (control), maize monocropping (sole maize), maize-cowpea intercrop, maize-cowpea rotation: maize phase and maize-cowpea: cowpea phase. Standard laboratory procedures were used to determine the changes in the selected soil properties as a result of these cropping sequences under CA. The study showed that maize- cowpea intercrop and rotation-maize phase under conservation agriculture could result in a significant increase in soil organic carbon, total nitrogen and exchangeable calcium after six years of practice. This increase can be associated with the amount and type of residue retained and the contribution of biologically fixed nitrogen from the cowpea. Having cowpea as the immediate previous crop in sequence can result in a depression of soil pH. Soil pH, total nitrogen, available phosphorus and exchangeable calcium in maize-cowpea cropping sequences can influence the amount of biologically fixed nitrogen. Changes in soil activity and microbial biomass might need more than six years to be apparent. The sequencing pattern of crops in a rotation, the choices and characteristics of crops, and the length of time of practice, all play an important role in determining interactions and processes leading to changes in soil properties and crop performance over time.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 187 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (P<0.05) affected by tillage practices. Soil penetration resistance was significantly higher for RT than CT. Irrespective of soil depth, there was higher soil organic carbon (SOC) for RT than CT. The SOC fractions followed in the order: non-labile>moderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P<0.05) higher soybean grain equivalent yield of 4.65 t ha–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


Sign in / Sign up

Export Citation Format

Share Document