soil salinization
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 318)

H-INDEX

32
(FIVE YEARS 9)

2022 ◽  
Vol 14 (2) ◽  
pp. 363
Author(s):  
Nuerbiye Muhetaer ◽  
Ilyas Nurmemet ◽  
Adilai Abulaiti ◽  
Sentian Xiao ◽  
Jing Zhao

In arid and semi-arid areas, timely and effective monitoring and mapping of salt-affected areas is essential to prevent land degradation and to achieve sustainable soil management. The main objective of this study is to make full use of synthetic aperture radar (SAR) polarization technology to improve soil salinity mapping in the Keriya Oasis, Xinjiang, China. In this study, 25 polarization features are extracted from ALOS PALSAR-2 images, of which four features are selected. In addition, three soil salinity inversion models, named the RSDI1, RSDI2, and RSDI3, are proposed. The analysis and comparison results of inversion accuracy show that the overall correlation values of the RSDI1, RSDI2, and RSDI3 models are 0.63, 0.61, and 0.62, respectively. This result indicates that the radar feature space models have the potential to extract information on soil salinization in the Keriya Oasis.


2022 ◽  
Vol 14 (2) ◽  
pp. 347
Author(s):  
Xiaofang Jiang ◽  
Hanchen Duan ◽  
Jie Liao ◽  
Pinglin Guo ◽  
Cuihua Huang ◽  
...  

Hyperspectral data has attracted considerable attention in recent years due to its high accuracy in monitoring soil salinization. At present, most existing research focuses on the saline soil in a single area without comparative analysis between regions. The regional differences in the hyperspectral characteristics of saline soil are still unclear. Thus, we chose Golmud in the cold–dry Qaidam Basin (QB–G) and Gaotai–Minghua in the relatively warm–dry Hexi Corridor (HC–GM) as the study areas, and used the deep extreme learning machine (DELM) and sine cosine algorithm–Elman (SCA–Elman) to predict soil salinity, and then selected the most suitable algorithm in these two regions. A total of 79 (QB–G) and 86 (HC–GM) soil samples were collected and tested to obtain their electrical conductivity (EC) and corresponding hyperspectral reflectance (R). We utilized the land surface parameters that affect the soil based on Landsat 8 and digital elevation model (DEM) data, selected the variables using the light gradient boosting machine (LightGBM), and built SCA–Elman and DELM from the hyperspectral reflectance data combined with land surface parameters. The results revealed the following: (1) The soil hyperspectral reflectance in QB–G was higher than that in HC–GM. The soils of QB–G are mainly the chloride type and those of HC–GM mainly belong to the sulfate type, having lower reflectance. (2) The accuracies of some of the SCA–Elman and DELM models in QB–G (the highest MAEv, RMSEv, and were 0.09, 0.12 and 0.75, respectively) were higher than those in HC–GM (the highest MAEv, RMSEv, and were 0.10, 0.14 and 0.73, respectively), which has flatter terrain and less obvious surface changes. The surface parameters in QB–G had higher correlation coefficients with EC due to the regular altitude change and cold–dry climate. (3) Most of the SCA–Elman results (the mean in HC-GM and QB-G were 0.62 and 0.60, respectively) in all areas performed better than the DELM results (the mean in HC–GM and QB–G were 0.51 and 0.49, respectively). Therefore, SCA–Elman was more suitable for the soil salinity prediction in HC–GM and QB–G. This can provide a reference for soil salinization monitoring and model selection in the future.


2022 ◽  
Vol 15 (1) ◽  
pp. 129-143
Author(s):  
Vladimir Mirlas ◽  
Yaakov Anker ◽  
Asher Aizenkod ◽  
Naftali Goldshleger

Abstract. Olive (Olea europaea L.) orchard brackish water irrigation with incorrect irrigation management reduces soil fertility and degrades soil health through soil salinization. This study was conducted in the Beit She'an Valley, one of the main agricultural regions in Israel, in an olive orchard in which a combination of soil salinization and poor drainage conditions impedes plant development and causes severe economic damage. By combining various research methods, including soil salinity monitoring, field experiments, remote sensing (frequency domain electromagnetic – FDEM), and unsaturated soil profile saline water movement modeling, the salinization processes were quantified. Irrigation water conductance of 3.13 dS m−1 points to salinization within the tree upper root zone, whereas the modeling results suggest that salinization danger is greater with brackish treated wastewater rather than with lower-salinity brackish irrigation groundwater and that irrigation with potable water can help reduce salt accumulation and recover damaged plots.


2022 ◽  
Vol 14 (2) ◽  
pp. 741
Author(s):  
Zhenhua Wu ◽  
Mingliang Che ◽  
Shutao Zhang ◽  
Linghua Duo ◽  
Shaogang Lei ◽  
...  

To deal with the problem of soil salinization that exists widely in semi-arid grassland, the Shengli Coalfield in Xilinhot City was selected as the study area. Six periods of Landsat remote sensing data in 2002, 2005, 2008, 2011, 2014, and 2017 were used to extract the salinity index (SI) and surface albedo to construct the SI-Albedo feature space. The salinization monitoring index (SMI) was used to calculate and classify the soil salinization grades in the study area. The soil salinization status and its dynamic changes were monitored and analyzed. Combined with the logistic regression model, the roles of human and natural factors in the development of soil salinization were determined. The results were as follows: (1) The SMI index constructed using the SI-Albedo feature space is simple and easy to calculate, which is conducive to remote sensing monitoring of salinized soil. R2 of the SMI and soil salt content in the 2017 data from the study area is 0.7313, which achieves good results in the quantitative analysis and monitoring of soil salinization in the Xilinhot Shengli Coalfield. (2) The study area is a grassland landscape. However, grassland landscapes are decreasing year by year, and town landscapes, mining landscapes, and road landscapes are greatly increased. The areas of soil salinization reversion in the Shengli mining area from 2002–2005, 2005–2008, 2008–2011, 2011–2014, 2014–2017, and 2002–2017 were 65.64 km2, 1.03 km2, 18.44 km2, 0.9 km2, 7.52 km2, and 62.33 km2, respectively. The overall trend of soil salinization in the study area was reversed from 2002 to 2017. (3) The driving factors of salinized land from 2002 to 2008 are as follows: the distance to the nearest town landscape > the distance to the nearest mining landscape > the distance to the nearest road landscape. The driving factors of salinized land from 2008 to 2017 are as follows: the distance to nearest mining landscape > the distance to the nearest water landscape > the distance to nearest town landscape > altitude > aspect. Coal exploitation and town expansion have occupied a large amount of saline land, and petroleum exploitation and abandoned railway test sites have intensified the development of saline land. This study provides a reference for the treatment and protection of soil salinization in semi-arid grassland mining areas.


Author(s):  
Zengming Ke ◽  
Xiaoli Liu ◽  
Lihui Ma ◽  
Qinge Dongle ◽  
Feng Jiao ◽  
...  

Water shortage and soil salinization in gully farmland comprising sediment deposited farmland (SF) and excavated farmland (EF) have become a widespread concern in the loess hilly region. A two-year field experiment was conducted to assess the soil water content (SWC) and salt content (SSC) and their effect on the spring maize yield and water use efficiency in SF and EF. Eight treatments comprising flat cropping without mulching (1), ridge planting without mulching (2), ridge planting with plastic mulching (3), and ridge planting with straw mulching (4) were tested in the SF and EF plots, respectively. The results showed that the yield was higher in SF than EF, whereas the water use efficiency was significantly higher in EF because the bottom water flux was 117.4% higher in SF than EF (P < 0.01). A significant positive correlation was found between the average SWC and yield (P < 0.01), thereby indicating that the yield was severely limited by the SWC. Thus, the higher water use efficiency in EF has important implications for alleviating water scarcity during agricultural production in this region. The risk of soil salinization was decreased greatly by treatment 3 where the SSC was decreased in EF and SF were 0.09 g kg–1 and 0.08 g kg–1, respectively. In addition, treatment 3 had the most significant impacts on the yield and water use efficiency. Our study provided appropriate land type and effective tillage measure for the sustainable development in dryland agricultural areas.


2022 ◽  
Author(s):  
Zhang Wei ◽  
Guozhang Bao ◽  
Tang Wenyi ◽  
Dai Gejun ◽  
Xiao Jing ◽  
...  

Abstract In the Qinghai-Tibet Plateau, both the large daily temperature difference and soil salinization make plants susceptible to abiotic stresses such as freeze-thaw and salinity. Meanwhile, crops in this area could be subjected to the influence of artemisinin, an allelochemical exuded by Artemisia annua. In the context of freeze-thaw and salinity stresses, artemisinin was induced as an allelopathy stress factor to explore the physiological response of highland barley, including the relative electrical conductivity (RC), soluble protein (SP) content, malondialdehyde (MDA) content, antioxidant enzyme activity, and water use efficiency (WUE).There data suggested that artemisinin weakened the self-osmotic adjustment ability of seedlings, reducing the SOD activity in scavenging efficiency of reactive oxygen species, then causing oxidative damage to cell membrane of seedlings, which significantly increases the content of RC and MDA. Artemisinin stress can reduce the WUE of seedlings and weaken the photosynthesis intensity of seedlings as well. In a word, salinity stress and artemisinin respectively showed a synergistic compound relationship with freeze-thaw stress,


2022 ◽  
Author(s):  
Xiquan Wang ◽  
Hongyuan Zhang ◽  
Zhizhong Zhang ◽  
Chenping Zhang ◽  
Kai Zhang ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Lorenzo De Carlo ◽  
Gaetano Alessandro Vivaldi ◽  
Maria Clementina Caputo

This paper focused on the use of electromagnetic induction measurements in order to investigate soil salinization caused by irrigation with saline reclaimed water. An experimental activity was carried out during the growing season of tomato crop in order to evaluate expected soil salinization effects caused by different saline agro-industrial wastewaters used as irrigation sources. Soil electrical conductivity, strictly related to the soil salinity, has been monitored for three months by means of Electromagnetic Induction (EMI) measurements, and evident differences in the soil response have been observed. The study highlighted two aspects that can improve soil investigation due to the utilization of geophysical tools. First, EMI data can map large areas in a short period of time with an unprecedented level of detail by overcoming practical difficulties in order to massively sample soil. At the same time, repeated measurements over time allow updating real-time soil salinity maps by using accurate correlations with soil electrical conductivity. This application points out how integrated agro-geophysical research approaches can play a strategic role in agricultural saline water management in order to prevent soil salinization risks in medium to long-term periods.


2021 ◽  
Vol 6 (48) ◽  
pp. 16-16
Author(s):  
Shima Mohammadi ◽  

For the studied saline soils, the expediency of assessing the content of mobile ion compounds by chemical autography based on electrolysis and ionite membranes, vertical electrical sensing is shown. However, the electrical conductivity of soils depended on humidity, temperature, humus content, granulometric composition, soil density, and fertilizer application. The change in the nature and degree of soil salinization over time and in space was determined not only by the microrelief of the surface, groundwater and the change in the depth of the umbrellas in density, but also by the patterns of solubility of salts from humidity, temperature, pCO2, complex formation. For relative optimization of the situation, it is recommended to apply mineral fertilizers, stimulants, organic fertilizers, and create a large-porous layer at a depth of 40-70 cm, reducing the upward current from the lower layers of the soil to the Ap. Keywords: SOIL, SALINIZATION, WAYS OF OPTIMIZATION


Sign in / Sign up

Export Citation Format

Share Document