Dynamic Time Slice Task Scheduling in Cloud Computing

Author(s):  
Linz Tom ◽  
V. R. Bindu
Computers ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 63
Author(s):  
Fahd Alhaidari ◽  
Taghreed Zayed Balharith

Recently, there has been significant growth in the popularity of cloud computing systems. One of the main issues in building cloud computing systems is task scheduling. It plays a critical role in achieving high-level performance and outstanding throughput by having the greatest benefit from the resources. Therefore, enhancing task scheduling algorithms will enhance the QoS, thus leading to more sustainability of cloud computing systems. This paper introduces a novel technique called the dynamic round-robin heuristic algorithm (DRRHA) by utilizing the round-robin algorithm and tuning its time quantum in a dynamic manner based on the mean of the time quantum. Moreover, we applied the remaining burst time of the task as a factor to decide the continuity of executing the task during the current round. The experimental results obtained using the CloudSim Plus tool showed that the DRRHA significantly outperformed the competition in terms of the average waiting time, turnaround time, and response time compared with several studied algorithms, including IRRVQ, dynamic time slice round-robin, improved RR, and SRDQ algorithms.


Author(s):  
Ramandeep Kaur ◽  
Navpreet Kaur

The cloud computing can be essentially expressed as aconveyance of computing condition where distinctive assets are conveyed as a support of the client or different occupants over the web. The task scheduling basically concentrates on improving the productive use of assets and henceforth decrease in task fruition time. Task scheduling is utilized to allot certain tasks to specific assets at a specific time occurrence. A wide range of systems has been exhibited to take care of the issues of scheduling of various tasks. Task scheduling enhances the productive use of asset and yields less reaction time with the goal that the execution of submitted tasks happens inside a conceivable least time. This paper talks about the investigation of need, length and due date based task scheduling calculations utilized as a part of cloud computing.


2013 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
V. Srikanth Reddy ◽  
V. Krishna Reddy

Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


Sign in / Sign up

Export Citation Format

Share Document