Smartphone Inertial Sensors-Based Human Activity Detection Using Support Vector Machine

Author(s):  
Sarvesh Kumar Swarnakar ◽  
Harshit Agrawal ◽  
Ankita Goel
2012 ◽  
Vol 468-471 ◽  
pp. 2916-2919
Author(s):  
Fan Yang ◽  
Yu Chuan Wu

This paper describes how to use a posture sensor to validate human daily activity and by machine learning algorithm - Support Vector Machine (SVM) an outstanding model is built. The optimal parameter σ and c of RBF kernel SVM were obtained by searching automatically. Those kinematic data was carried out through three major steps: wavelet transformation, Principle Component Analysis (PCA) -based dimensionality reduction and k-fold cross-validation, followed by implementing a best classifier to distinguish 6 difference actions. As an activity classifier, the SVM (Support Vector Machine) algorithm is used, and we have achieved over 94.5% of mean accuracy in detecting differential actions. It shows that the verification approach based on the recognition of human activity detection is valuable and will be further explored in the near future.


Author(s):  
Stevan Cakic ◽  
Stevan Sandi ◽  
Daliborka Nedic ◽  
Srdan Krco ◽  
Tomo Popovic

Author(s):  
Harshit Grover ◽  
Dheryta Jaisinghani ◽  
Nishtha Phutela ◽  
Shivani Mittal

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7853
Author(s):  
Aleksej Logacjov ◽  
Kerstin Bach ◽  
Atle Kongsvold ◽  
Hilde Bremseth Bårdstu ◽  
Paul Jarle Mork

Existing accelerometer-based human activity recognition (HAR) benchmark datasets that were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor, and unreliable annotations. We make two contributions in this work. First, we present the publicly available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers, attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’ Kappa =0.96). They labeled twelve activities. The second contribution of this paper is the training of seven different baseline machine learning models for HAR on our dataset. We used a support vector machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network, bidirectional long short-term memory, and convolutional neural network with multi-resolution blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard deviation: ±0.18), recall of 0.85±0.13, and precision of 0.79±0.22 in a leave-one-subject-out cross-validation. Our highly professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.


2020 ◽  
Vol 8 (6) ◽  
pp. 3949-3953

Nowadays there is a significant study effort due to the popularity of CCTV to enhance analysis methods for surveillance videos and video-based images in conjunction with machine learning techniques for the purpose of independent assessment of such information sources. Although recognition of human intervention in computer vision is extremely attained subject, abnormal behavior detection is lately attracting more research attention. In this paper, we are interested in the studying the two main steps that compose abnormal human activity detection system which are the behavior representation and modelling. And we use different techniques, related to feature extraction and description for behavior representation as well as unsupervised classification methods for behavior modelling. In addition, available datasets and metrics for performance evaluation will be presented. Finally, this paper will be aimed to detect abnormal behaved object in crowd, such as fast motion in a crowd of walking people


Sign in / Sign up

Export Citation Format

Share Document