Prediction of Tensile Strength of Hybrid Natural Fiber Reinforced Composites Using Machine Learning Approach

Author(s):  
Murugappan Elango ◽  
V. Naveen Krishna ◽  
Adithyan Annamalai ◽  
P. Harish
2014 ◽  
Vol 592-594 ◽  
pp. 134-138 ◽  
Author(s):  
G. Dilli Babu ◽  
K. Sivaji Babu ◽  
B. Uma Maheswar Gowd

A study has been carried out to investigate the delamination and tensile properties of drilled composites made by reinforcing the natural fibers like hemp, jute, banana and vakka into a polyester resin matrix. The fibers extracted by retting and manual processes have been used to fabricate the composites. These composites are tested for delamination and tensile strength after drilling and compared with those of established composite like glass made under the same laboratory conditions. The Taguchi method with orthogonal array of L9 (34) was selected to realize the influence of the drilling parameters (cutting speed and feed rate) on delamination and tensile strength for various fiber reinforced composites. The results indicate that the delamination of the drilled natural fiber composites were in some cases better than those of glass fiber composites.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Author(s):  
Haasith Chittimenu ◽  
Monesh Pasupureddy ◽  
Chandrasekar Muthukumar ◽  
Senthilkumar Krishnasamy ◽  
Senthil Muthu Kumar Thiagamani ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


2015 ◽  
Vol 50 (9) ◽  
pp. 1145-1160 ◽  
Author(s):  
Kabiru Mustapha ◽  
Ebenezer Annan ◽  
Salifu T Azeko ◽  
Martiale G Zebaze Kana ◽  
Winston O Soboyejo

Sign in / Sign up

Export Citation Format

Share Document