Detecting Diabetic Retinopathy Using Deep Learning Technique with Resnet-50

2021 ◽  
pp. 45-55
Author(s):  
Viraj Jiwane ◽  
Anubhav DattaGupta ◽  
Arunkumar Chauhan ◽  
Vidya Patil
10.29007/h46n ◽  
2022 ◽  
Author(s):  
Hoang Nhut Huynh ◽  
Minh Thanh Do ◽  
Gia Thinh Huynh ◽  
Anh Tu Tran ◽  
Trung Nghia Tran

Diabetic retinopathy (DR) is a complication of diabetes mellitus that causes retinal damage that can lead to vision loss if not detected and treated promptly. The common diagnosis stages of the disease take time, effort, and cost and can be misdiagnosed. In the recent period with the explosion of artificial intelligence, deep learning has become the most popular tool with high performance in many fields, especially in the analysis and classification of medical images. The Convolutional Neural Network (CNN) is more widely used as a deep learning method in medical imaging analysis with highly effective. In this paper, the five-stage image of modern DR (healthy, mild, moderate, severe, and proliferative) can be detected and classified using the deep learning technique. After cross-validation training and testing on the corresponding 5,590-image dataset, a pre-MobileNetV2 training model is proposed in classifying stages of diabetic retinopathy. The average accuracy of the model achieved was 93.89% with the precision of 94.00%, recall 92.00% and f1-score 90.00%. The corresponding thermal image is also given to help experts for evaluating the influence of the retina in each different stage.


Diabetic retinopathy is becoming a more prevalent disease in diabetic patients nowadays. The surprising fact about the disease is it leaves no symptoms at the beginning stage and the patient can realize the disease only when his vision starts to fall. If the disease is not found at the earliest it leads to a stage where the probability of curing the disease is less. But if we find the disease at that stage, the patient might be in a situation of losing the vision completely. Hence, this paper aims at finding the disease at the earliest possible stage by extracting two features from the retinal image namely Microaneurysms which is found to be the starting symptom showing feature and Hemorrhage which shows symptoms of the other stages. Based on these two features we classify the stage of the disease as normal, beginning, mild and severe using convolutional neural network, a deep learning technique which reduces the burden of manual feature extraction and gives higher accuracy. We also locate the position of these features in the disease affected retinal images to help the doctors offer better medical treatment.


2021 ◽  
pp. 1-12
Author(s):  
Gaurav Sarraf ◽  
Anirudh Ramesh Srivatsa ◽  
MS Swetha

With the ever-rising threat to security, multiple industries are always in search of safer communication techniques both in rest and transit. Multiple security institutions agree that any systems security can be modeled around three major concepts: Confidentiality, Availability, and Integrity. We try to reduce the holes in these concepts by developing a Deep Learning based Steganography technique. In our study, we have seen, data compression has to be at the heart of any sound steganography system. In this paper, we have shown that it is possible to compress and encode data efficiently to solve critical problems of steganography. The deep learning technique, which comprises an auto-encoder with Convolutional Neural Network as its building block, not only compresses the secret file but also learns how to hide the compressed data in the cover file efficiently. The proposed techniques can encode secret files of the same size as of cover, or in some sporadic cases, even larger files can be encoded. We have also shown that the same model architecture can theoretically be applied to any file type. Finally, we show that our proposed technique surreptitiously evades all popular steganalysis techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Mirshahi ◽  
Pasha Anvari ◽  
Hamid Riazi-Esfahani ◽  
Mahsa Sardarinia ◽  
Masood Naseripour ◽  
...  

AbstractThe purpose of this study was to introduce a new deep learning (DL) model for segmentation of the fovea avascular zone (FAZ) in en face optical coherence tomography angiography (OCTA) and compare the results with those of the device’s built-in software and manual measurements in healthy subjects and diabetic patients. In this retrospective study, FAZ borders were delineated in the inner retinal slab of 3 × 3 enface OCTA images of 131 eyes of 88 diabetic patients and 32 eyes of 18 healthy subjects. To train a deep convolutional neural network (CNN) model, 126 enface OCTA images (104 eyes with diabetic retinopathy and 22 normal eyes) were used as training/validation dataset. Then, the accuracy of the model was evaluated using a dataset consisting of OCTA images of 10 normal eyes and 27 eyes with diabetic retinopathy. The CNN model was based on Detectron2, an open-source modular object detection library. In addition, automated FAZ measurements were conducted using the device’s built-in commercial software, and manual FAZ delineation was performed using ImageJ software. Bland–Altman analysis was used to show 95% limit of agreement (95% LoA) between different methods. The mean dice similarity coefficient of the DL model was 0.94 ± 0.04 in the testing dataset. There was excellent agreement between automated, DL model and manual measurements of FAZ in healthy subjects (95% LoA of − 0.005 to 0.026 mm2 between automated and manual measurement and 0.000 to 0.009 mm2 between DL and manual FAZ area). In diabetic eyes, the agreement between DL and manual measurements was excellent (95% LoA of − 0.063 to 0.095), however, there was a poor agreement between the automated and manual method (95% LoA of − 0.186 to 0.331). The presence of diabetic macular edema and intraretinal cysts at the fovea were associated with erroneous FAZ measurements by the device’s built-in software. In conclusion, the DL model showed an excellent accuracy in detection of FAZ border in enfaces OCTA images of both diabetic patients and healthy subjects. The DL and manual measurements outperformed the automated measurements of the built-in software.


Sign in / Sign up

Export Citation Format

Share Document