An Evolutionary Tomographic Reconstruction Procedure for Defect Identification Using Time-of-Flight of Ultrasound

2021 ◽  
pp. 477-484
Author(s):  
Shyam Prasad Kodali ◽  
Boggarapu Nageswara Rao
1998 ◽  
Vol 120 (3) ◽  
pp. 514-518 ◽  
Author(s):  
M. Hilton ◽  
A. H. Lettington ◽  
C. W. Wilson

Infrared (IR) spectra of the exhaust emissions from a static gas turbine engine have been studied using Fourier Transform (FT) spectroscopic techniques. Passive detection of the infrared emission from remote (range ∼ 3 m) hot exhaust gases was obtained nonintrusively using a high spectral resolution (0.25 cm−1) FTIR spectrometer. Remote gas temperatures were determined from their emission spectra using the total radiant flux method or by analysis of rotational line structure. The HITRAN database of atmospheric species was used to model the emission from gas mixtures at the relevant temperatures. The spatial distribution of molecular species across a section transverse to the exhaust plume ∼10 cm downstream of the jet pipe nozzle was studied using a tomographic reconstruction procedure. Spectra of the infrared emission from the plume were taken along a number of transverse lines of sight from the centerline of the engine outwards. A mathematical matrix inversion technique was applied to reconstruct the molecular concentrations of CO and CO2 in concentric regions about the centerline. Quantitative measurement of the molecular species concentrations determined nonintrusively were compared with results from conventional extractive sampling techniques.


2000 ◽  
Vol 6 (S2) ◽  
pp. 242-243
Author(s):  
Michael B. Sherman ◽  
Guichy Waller ◽  
Paul Matsudaira ◽  
Wah Chiu ◽  
Michael F. Schmid

Limulus sperm contains a dynamic macromolecular structure that rapidly extends a 50-μum process called the true discharge. The core of this structure is a bundle of ordered filaments composed of a complex of actin, scruin and calmodulin. We have shown that small segments along the bundle can be treated as single crystals with a unit cell spacing of 144 × 144 × 766 Å. A tomographic reconstruction of the bundle was done from multiple tilt series of images to ∼40 Å resolution. To extend the structural determination of the bundle at a higher resolution, we have used electron crystallographic analysis of single images of the bundles preserved in vitreous ice. Furthermore, we did not employ any helical or crystallographic symmetry (other than PI) in the reconstruction procedure.Acrosomal bundles from Limulus sperm cells were purified as described earlier. Images of frozen hydrated bundles were taken at 40,000x EM magnification in a JEOL 4000EX electron cryomicroscope using an electron dose of 6 - 10 electrons/Å2.


Author(s):  
Moira Hilton ◽  
Alan H. Lettington ◽  
Chris W. Wilson

Infrared (IR) spectra of the exhaust emissions from a static gas turbine engine have been studied using Fourier Transform (FT) spectroscopic techniques. Passive detection of the infrared emission from remote (range ∼ 3 m) hot exhaust gases was obtained non-intrusively using a high spectral resolution (0.25 cm−1) FTIR spectrometer. Remote gas temperatures were determined from their emission spectra using the total radiant flux method or by analysis of rotational line structure. The HITRAN database of atmospheric species was used to model the emission from gas mixtures at the relevant temperatures. The spatial distribution of molecular species across a section transverse to the exhaust plume −10 cm downstream of the jet pipe nozzle was studied using a tomographic reconstruction procedure. Spectra of the infrared emission from the plume were taken along a number of transverse lines of sight from the centreline of the engine outwards. A mathematical matrix inversion technique was applied to reconstruct the molecular concentrations of CO and CO2 in concentric regions about the centreline. Quantitative measurements of the molecular species concentrations determined non-intrusively were compared with results from conventional extractive sampling techniques.


2005 ◽  
Vol 27 (4) ◽  
pp. 221-236
Author(s):  
Emilie Franceschini ◽  
Marie-Christine Pauzin ◽  
Serge Mensah ◽  
Jean-Philippe Groby

Among the many factors involved in ultrasound attenuation phenomena, scattering effects play a major role, even in the unexpected case of soft tissues. It is proposed in this study to quantitatively evaluate the scattering affecting the measurements before reconstructing the absorption parameter alone. The reconstruction procedure involves three steps: (1) Estimating the sound speed map using a transmission tomography algorithm. This estimation procedure provides a numerical phantom of the organ probed, cleared of all dissipative components. This absorption free phantom mimics the (viscoacoustic) tissues imaged except for the density and absorption characteristics: the density a priori equals 1000 kg/m3 and the absorption is not taken into account. The impedance fluctuations in the object are therefore approximated on the basis of the sound speed contrast. (2) Synthesing the field scattered by the absorption free phantom; the attenuation observed here results solely from the scattering phenomenon. The synthesis is carried out using a finite-element time domain code simulating the ultrasonic propagation through the phantom. It provides the scattering distortion reference introduced into the log spectral absorption estimator. (3) Reducing the scattering distortions affecting the integrated absorption measured along the ray paths using a log spectral procedure. The corrected integrated absorption is then processed using a tomographic reconstruction procedure that provides an estimate of the absorption distribution. Simple numerical simulations show the improvement obtained in the absorption estimates with this approach.


2006 ◽  
Vol 39 (1) ◽  
pp. 82-89 ◽  
Author(s):  
M. J. Gutmann ◽  
W. Kockelmann ◽  
L. C. Chapon ◽  
P. G. Radaelli

A technique that allows the spatial distribution of crystallographic phases in the interior of an object to be reconstructed from neutron time-of-flight (TOF) diffraction is described. To this end, the shift of the Bragg peaks due to the so-called `geometrical aberration' is exploited. A collimated incident white beam is used to perform a translational or rotational scan of the object whilst collecting a TOF data set for each sample position or orientation. Depending on the location of any scattering material along the line of the incident beam path through the object, the measuredd-spacings of the corresponding Bragg peaks are shifted with respect to their nominal values, which are attained only at the geometrical centre of the instrument. Using a formula that is usually employed to correct for sample offset, the phase distribution along the incident beamline can be directly reconstructed, without the need to perform a tomographic reconstruction. Results are shown from a demonstration experiment carried out on a cylindrical Al container enclosing an arrangement of Cu and Fe rods. On the basis of this formalism, an optimized experimental geometry is described and the potential and limits of this technique are explored, as are its applicability to X-ray and constant-wavelength neutron diffraction.


2005 ◽  
Vol 5 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Hua Zhong ◽  
Jingzhou Xu ◽  
Xu Xie ◽  
Tao Yuan ◽  
R. Reightler ◽  
...  

Author(s):  
G. Di Sciacca ◽  
L. Di Sieno ◽  
A. Farina ◽  
P. Lanka ◽  
E. Venturini ◽  
...  

Multimodal imaging is an active branch of research as it has the potential to improve common medical imaging techniques. Diffuse optical tomography (DOT) is an example of a low resolution, functional imaging modality that typically has very low resolution due to the ill-posedness of its underlying inverse problem. Combining the functional information of DOT with a high resolution structural imaging modality has been studied widely. In particular, the combination of DOT with ultrasound (US) could serve as a useful tool for clinicians for the formulation of accurate diagnosis of breast lesions. In this paper, we propose a novel method for US-guided DOT reconstruction using a portable time-domain measurement system. B-mode US imaging is used to retrieve morphological information on the probed tissues by means of a semi-automatical segmentation procedure based on active contour fitting. A two-dimensional to three-dimensional extrapolation procedure, based on the concept of distance transform, is then applied to generate a three-dimensional edge-weighting prior for the regularization of DOT. The reconstruction procedure has been tested on experimental data obtained on specifically designed dual-modality silicon phantoms. Results show a substantial quantification improvement upon the application of the implemented technique. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’.


Sign in / Sign up

Export Citation Format

Share Document