Classification of Brain Tumor Images Using Enhanced Deep Learning-Based Methodologies

2021 ◽  
pp. 519-532
Author(s):  
Aakash Paul ◽  
Priyanshi Chauhan ◽  
Himansh Sharma ◽  
Kartikay Khosla ◽  
Varun Srivastava ◽  
...  
Keyword(s):  
2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2019 ◽  
Vol 6 (04) ◽  
pp. 1
Author(s):  
Sahil Nalawade ◽  
Gowtham K. Murugesan ◽  
Maryam Vejdani-Jahromi ◽  
Ryan A. Fisicaro ◽  
Chandan G. Bangalore Yogananda ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 37-42
Author(s):  
M. Ravikumar ◽  
B.J. Shivaprasad

In recent years, deep learning based networks have achieved good performance in brain tumour segmentation of MR Image. Among the existing networks, U-Net has been successfully applied. In this paper, it is propose deep-learning based Bidirectional Convolutional LSTM XNet (BConvLSTMXNet) for segmentation of brain tumor and using GoogLeNet classify tumor & non-tumor. Evaluated on BRATS-2019 data-set and the results are obtained for classification of tumor and non-tumor with Accuracy: 0.91, Precision: 0.95, Recall: 1.00 & F1-Score: 0.92. Similarly for segmentation of brain tumor obtained Accuracy: 0.99, Specificity: 0.98, Sensitivity: 0.91, Precision: 0.91 & F1-Score: 0.88.


Author(s):  
Nur Alisa Ali ◽  
A. R. Syafeeza ◽  
Liow Jia Geok ◽  
Y. C. Wong ◽  
Norihan Abdul Hamid ◽  
...  

Digital image processing is a rising field for the investigation of complicated diseases such as brain tumor, breast cancer, kidney stones, lung cancer, ovarian cancer, and cervix cancer and so on. The recognition of the brain tumor is considered to be a very critical task. A number of approaches are used for the scanning of a particular body part like CT scan, X-rays, and Magnetic Resonance Image (MRI). These pictures are then examined by the surgeons for the removal of the problem. The main objective of examining these MRI images (mainly) is to extract the meaningful information with high accuracy. Machine Learning and Deep Learning algorithms are mainly used for analysing the medical images which can identify, localize and classify the brain tumor into sub categories, according to which the diagnosis would be done by the professionals. In this paper, we have discussed the different techniques that are used for tumor pre-processing, segmentation, localization, extraction of features and classification and summarize more than 30 contributions to this field. Also, we discussed the existing state-of-the-art, literature gaps, open challenges and future scope in this area.


Sign in / Sign up

Export Citation Format

Share Document