Forward and Inverse Kinematics Analysis of SMA Spring-Driven Flexible Manipulator

2021 ◽  
pp. 788-800
Author(s):  
Binghang Xiao ◽  
Jianzhe Huang ◽  
Wuji Liu ◽  
Yajun Teng ◽  
Lingfeng Qiao ◽  
...  
2014 ◽  
Vol 709 ◽  
pp. 316-322
Author(s):  
Xu Dong ◽  
Zhong Cai Zheng ◽  
Yan Gao ◽  
Zhen Ting Jiang ◽  
Hai Yong Xiao

The Power-On-Live Manipulator with hydraulic system can complete many different repair works in the Substation. This paper focuses on the study of the kinematics of six DOF manipulator, and establishes the forward kinematics equation based on the analysis of the whole power-on-live manipulator. The methods of analytical and geometric are used to complete the power-on-live manipulator’s inverse kinematics calculations, and then the effectiveness of the power-on-live manipulator’s forward and inverse kinematics are verified by the numerical simulation software and the dynamic simulation software.


2010 ◽  
Vol 44-47 ◽  
pp. 656-660
Author(s):  
Yu Jie Cui ◽  
Jian Ning Hua

Detailed analysis is given to kinematics of a 4-DOF manipulator. Forward and inverse kinematics of the manipulator is performed through Denevit and Hartenberg method. Kinematics equations are obtained, whereupon mathematic formulas are provided for the manipulator control. The effectiveness of kinematics equations is verified by the Robotics Toolbox simulation of the Matlab.


Author(s):  
J-S Zhao ◽  
W Lu ◽  
F Chu ◽  
Z-J Feng

As the kinematics and statics play a very important role in determining the actuating inputs and the effective loads that the end-effector sustains, this article focuses on this issue and proposes an analytical process to study the forward and inverse kinematics and statics of spatial manipulators. As series manipulators and parallel manipulators show different features in kinematics and statics, this article discusses them separately. First, the forward and inverse velocity problems of the manipulator linkages are investigated with reciprocal screw theory. Then, the static balance conditions together with forward and inverse statics of the manipulator linkages are established through virtual power theory. In the kinematics analysis, the primary conditions for feasible motions of an end-effector are addressed through velocity screws. Illustrative examples indicate that the method proposed in this article can be used to guide the singularity identification, path planning, and feasible motion determination.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Seemal Asif ◽  
Philip Webb

The aim of the paper is to study the kinematics of the manipulator. The articulated robot with a spherical wrist has been used for this purpose. The Comau NM45 Manipulator has been chosen for the kinematic model study. The manipulator contains six revolution joints. Pieper’s approach has been employed to study the kinematics (inverse) of the robot manipulator. Using this approach, the inverse kinematic problem is divided into two small less complex problems. This reduces the time of analysing the manipulator kinematically. The forward and inverse kinematics has been performed, and mathematical solutions are detailed based on D-H (Denavit–Hartenberg) parameters. The kinematics solution has been verified by solving the manipulator’s motion. It has been observed that the model is accurate as the motion trajectory was smoothly followed by the manipulator.


Volume 2 ◽  
2004 ◽  
Author(s):  
G. R. Vossoughi ◽  
S. Bagheri ◽  
M. Tavakoli ◽  
M. R. Zakerzadeh ◽  
M. Hosseinzadeh

This paper introduces a multi-task 4 DOF pole climbing/manipulating robotic mechanism. A hybrid serial/parallel mechanism, providing 2 translations and 2 rotations, have been designed as the main part of the mechanism. This robotic mechanism can travel along tubular structures with bends, branches and step changes in cross section. It is also able to perform manipulation, repair and maintenance tasks after reaching the target point on the structure. After introducing the mechanism, a kinematics model and the forward and inverse kinematics as well as the workspace analysis of the mechanism are presented.


Author(s):  
Saeed Behzadipour

A new hybrid cable-driven manipulator is introduced. The manipulator is composed of a Cartesian mechanism to provide three translational degrees of freedom and a cable system to drive the mechanism. The end-effector is driven by three rotational motors through the cables. The cable drive system in this mechanism is self-stressed meaning that the pre-tension of the cables which keep them taut is provided internally. In other words, no redundant actuator or external force is required to maintain the tensile force in the cables. This simplifies the operation of the mechanism by reducing the number of actuators and also avoids their continuous static loading. It also eliminates the redundant work of the actuators which is usually present in cable-driven mechanisms. Forward and inverse kinematics problems are solved and shown to have explicit solutions. Static and stiffness analysis are also performed. The effects of the cable’s compliance on the stiffness of the mechanism is modeled and presented by a characteristic cable length. The characteristic cable length is calculated and analyzed in representative locations of the workspace.


Sign in / Sign up

Export Citation Format

Share Document