Dynamic Topology Reconstruction on Next Generation WLAN Using Spatial Reuse Gain by DBSCAN Clustering Algorithm

Author(s):  
Maleeha Sheikh ◽  
Syeda Myesha Mashuda ◽  
Redwan Abedin ◽  
Md. Obaidur Rahman
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 43364-43377
Author(s):  
Xirui Xue ◽  
Shucai Huang ◽  
Jiahao Xie ◽  
Jiashun Ma ◽  
Ning Li

Author(s):  
J. W. Li ◽  
X. Q. Han ◽  
J. W. Jiang ◽  
Y. Hu ◽  
L. Liu

Abstract. How to establish an effective method of large data analysis of geographic space-time and quickly and accurately find the hidden value behind geographic information has become a current research focus. Researchers have found that clustering analysis methods in data mining field can well mine knowledge and information hidden in complex and massive spatio-temporal data, and density-based clustering is one of the most important clustering methods.However, the traditional DBSCAN clustering algorithm has some drawbacks which are difficult to overcome in parameter selection. For example, the two important parameters of Eps neighborhood and MinPts density need to be set artificially. If the clustering results are reasonable, the more suitable parameters can not be selected according to the guiding principles of parameter setting of traditional DBSCAN clustering algorithm. It can not produce accurate clustering results.To solve the problem of misclassification and density sparsity caused by unreasonable parameter selection in DBSCAN clustering algorithm. In this paper, a DBSCAN-based data efficient density clustering method with improved parameter optimization is proposed. Its evaluation index function (Optimal Distance) is obtained by cycling k-clustering in turn, and the optimal solution is selected. The optimal k-value in k-clustering is used to cluster samples. Through mathematical and physical analysis, we can determine the appropriate parameters of Eps and MinPts. Finally, we can get clustering results by DBSCAN clustering. Experiments show that this method can select parameters reasonably for DBSCAN clustering, which proves the superiority of the method described in this paper.


2020 ◽  
Author(s):  
Lucía Prieto Santamaría ◽  
Eduardo P. García del Valle ◽  
Gerardo Lagunes García ◽  
Massimiliano Zanin ◽  
Alejandro Rodríguez González ◽  
...  

AbstractWhile classical disease nosology is based on phenotypical characteristics, the increasing availability of biological and molecular data is providing new understanding of diseases and their underlying relationships, that could lead to a more comprehensive paradigm for modern medicine. In the present work, similarities between diseases are used to study the generation of new possible disease nosologic models that include both phenotypical and biological information. To this aim, disease similarity is measured in terms of disease feature vectors, that stood for genes, proteins, metabolic pathways and PPIs in the case of biological similarity, and for symptoms in the case of phenotypical similarity. An improvement in similarity computation is proposed, considering weighted instead of Booleans feature vectors. Unsupervised learning methods were applied to these data, specifically, density-based DBSCAN clustering algorithm. As evaluation metric silhouette coefficient was chosen, even though the number of clusters and the number of outliers were also considered. As a results validation, a comparison with randomly distributed data was performed. Results suggest that weighted biological similarities based on proteins, and computed according to cosine index, may provide a good starting point to rearrange disease taxonomy and nosology.


2020 ◽  
Vol 5 ◽  
Author(s):  
Luca Crociani ◽  
Giuseppe Vizzari ◽  
Andrea Gorrini ◽  
Stefania Bandini

Pedestrian behavioural dynamics have been growingly investigated by means of (semi)automated computing techniques for almost two decades, exploiting advancements on computing power, sensor accuracy and availability, computer vision algorithms. This has led to a unique consensus on the existence of significant difference between unidirectional and bidirectional flows of pedestrians, where the phenomenon of lane formation seems to play a major role. The collective behaviour of lane formation emerges in condition of variable density and due to a self-organisation dynamic, for which pedestrians are induced to walk following preceding persons to avoid and minimize conflictual situations. Although the formation of lanes is a well-known phenomenon in this field of study, there is still a lack of methods offering the possibility to provide an (even semi-) automatic identification and a quantitative characterization. In this context, the paper proposes an unsupervised learning approach for an automatic detection of lanes in multi-directional pedestrian flows, based on the DBSCAN clustering algorithm. The reliability of the approach is evaluated through an inter-rater agreement test between the results achieved by a human coder and by the algorithm.


2011 ◽  
Vol 301-303 ◽  
pp. 1133-1138 ◽  
Author(s):  
Yan Xiang Fu ◽  
Wei Zhong Zhao ◽  
Hui Fang Ma

Data clustering has been received considerable attention in many applications, such as data mining, document retrieval, image segmentation and pattern classification. The enlarging volumes of information emerging by the progress of technology, makes clustering of very large scale of data a challenging task. In order to deal with the problem, more researchers try to design efficient parallel clustering algorithms. In this paper, we propose a parallel DBSCAN clustering algorithm based on Hadoop, which is a simple yet powerful parallel programming platform. The experimental results demonstrate that the proposed algorithm can scale well and efficiently process large datasets on commodity hardware.


2016 ◽  
Vol 25 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Archana Purwar ◽  
Sandeep Kumar Singh

AbstractThe quality of data is an important task in the data mining. The validity of mining algorithms is reduced if data is not of good quality. The quality of data can be assessed in terms of missing values (MV) as well as noise present in the data set. Various imputation techniques have been studied in MV study, but little attention has been given on noise in earlier work. Moreover, to the best of knowledge, no one has used density-based spatial clustering of applications with noise (DBSCAN) clustering for MV imputation. This paper proposes a novel technique density-based imputation (DBSCANI) built on density-based clustering to deal with incomplete values in the presence of noise. Density-based clustering algorithm proposed by Kriegal groups the objects according to their density in spatial data bases. The high-density regions are known as clusters, and the low-density regions refer to the noise objects in the data set. A lot of experiments have been performed on the Iris data set from life science domain and Jain’s (2D) data set from shape data sets. The performance of the proposed method is evaluated using root mean square error (RMSE) as well as it is compared with existing K-means imputation (KMI). Results show that our method is more noise resistant than KMI on data sets used under study.


Sign in / Sign up

Export Citation Format

Share Document