disease similarity
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 48)

H-INDEX

10
(FIVE YEARS 5)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Liugen Wang ◽  
Min Shang ◽  
Qi Dai ◽  
Ping-an He

Abstract Background More and more evidence showed that long non-coding RNAs (lncRNAs) play important roles in the development and progression of human sophisticated diseases. Therefore, predicting human lncRNA-disease associations is a challenging and urgently task in bioinformatics to research of human sophisticated diseases. Results In the work, a global network-based computational framework called as LRWRHLDA were proposed which is a universal network-based method. Firstly, four isomorphic networks include lncRNA similarity network, disease similarity network, gene similarity network and miRNA similarity network were constructed. And then, six heterogeneous networks include known lncRNA-disease, lncRNA-gene, lncRNA-miRNA, disease-gene, disease-miRNA, and gene-miRNA associations network were applied to design a multi-layer network. Finally, the Laplace normalized random walk with restart algorithm in this global network is suggested to predict the relationship between lncRNAs and diseases. Conclusions The ten-fold cross validation is used to evaluate the performance of LRWRHLDA. As a result, LRWRHLDA achieves an AUC of 0.98402, which is higher than other compared methods. Furthermore, LRWRHLDA can predict isolated disease-related lnRNA (isolated lnRNA related disease). The results for colorectal cancer, lung adenocarcinoma, stomach cancer and breast cancer have been verified by other researches. The case studies indicated that our method is effective.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Li Wang ◽  
Cheng Zhong

Abstract Background Long non-coding RNAs (lncRNAs) are related to human diseases by regulating gene expression. Identifying lncRNA-disease associations (LDAs) will contribute to diagnose, treatment, and prognosis of diseases. However, the identification of LDAs by the biological experiments is time-consuming, costly and inefficient. Therefore, the development of efficient and high-accuracy computational methods for predicting LDAs is of great significance. Results In this paper, we propose a novel computational method (gGATLDA) to predict LDAs based on graph-level graph attention network. Firstly, we extract the enclosing subgraphs of each lncRNA-disease pair. Secondly, we construct the feature vectors by integrating lncRNA similarity and disease similarity as node attributes in subgraphs. Finally, we train a graph neural network (GNN) model by feeding the subgraphs and feature vectors to it, and use the trained GNN model to predict lncRNA-disease potential association scores. The experimental results show that our method can achieve higher area under the receiver operation characteristic curve (AUC), area under the precision recall curve (AUPR), accuracy and F1-Score than the state-of-the-art methods in five fold cross-validation. Case studies show that our method can effectively identify lncRNAs associated with breast cancer, gastric cancer, prostate cancer, and renal cancer. Conclusion The experimental results indicate that our method is a useful approach for predicting potential LDAs.


Author(s):  
Jingjing Chen ◽  
Yingying Chen ◽  
Kefeng Sun ◽  
Yu Wang ◽  
Hui He ◽  
...  

Ovarian cancer is one of the three most malignant tumors of the female reproductive system. At present, researchers do not know its pathogenesis, which makes the treatment effect unsatisfactory. Metabolomics is closely related to drug efficacy, safety evaluation, mechanism of action, and rational drug use. Therefore, identifying ovarian cancer-related metabolites could greatly help researchers understand the pathogenesis and develop treatment plans. However, the measurement of metabolites is inaccurate and greatly affects the environment, and biological experiment is time-consuming and costly. Therefore, researchers tend to use computational methods to identify disease-related metabolites in large scale. Since the hypothesis that similar diseases are related to similar metabolites is widely accepted, in this paper, we built both disease similarity network and metabolite similarity network and used graph convolutional network (GCN) to encode these networks. Then, support vector machine (SVM) was used to identify whether a metabolite is related to ovarian cancer. The experiment results show that the AUC and AUPR of our method are 0.92 and 0.81, respectively. Finally, we proposed an effective method to prioritize ovarian cancer-related metabolites in large scale.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nícia Rosário-Ferreira ◽  
Victor Guimarães ◽  
Vítor S. Costa ◽  
Irina S. Moreira

Abstract Background Blood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Tian Wang ◽  
Lei Li ◽  
Cun-Mei Ji ◽  
Chun-Hou Zheng ◽  
Jian-Cheng Ni

MicroRNAs (miRNAs) are small non-coding RNAs that have been demonstrated to be related to numerous complex human diseases. Considerable studies have suggested that miRNAs affect many complicated bioprocesses. Hence, the investigation of disease-related miRNAs by utilizing computational methods is warranted. In this study, we presented an improved label propagation for miRNA–disease association prediction (ILPMDA) method to observe disease-related miRNAs. First, we utilized similarity kernel fusion to integrate different types of biological information for generating miRNA and disease similarity networks. Second, we applied the weighted k-nearest known neighbor algorithm to update verified miRNA–disease association data. Third, we utilized improved label propagation in disease and miRNA similarity networks to make association prediction. Furthermore, we obtained final prediction scores by adopting an average ensemble method to integrate the two kinds of prediction results. To evaluate the prediction performance of ILPMDA, two types of cross-validation methods and case studies on three significant human diseases were implemented to determine the accuracy and effectiveness of ILPMDA. All results demonstrated that ILPMDA had the ability to discover potential miRNA–disease associations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhua Yao ◽  
Binbin Ji ◽  
Yaping Lv ◽  
Ling Li ◽  
Ju Xiang ◽  
...  

Studies have found that long non-coding RNAs (lncRNAs) play important roles in many human biological processes, and it is critical to explore potential lncRNA–disease associations, especially cancer-associated lncRNAs. However, traditional biological experiments are costly and time-consuming, so it is of great significance to develop effective computational models. We developed a random walk algorithm with restart on multiplex and heterogeneous networks of lncRNAs and diseases to predict lncRNA–disease associations (MHRWRLDA). First, multiple disease similarity networks are constructed by using different approaches to calculate similarity scores between diseases, and multiple lncRNA similarity networks are also constructed by using different approaches to calculate similarity scores between lncRNAs. Then, a multiplex and heterogeneous network was constructed by integrating multiple disease similarity networks and multiple lncRNA similarity networks with the lncRNA–disease associations, and a random walk with restart on the multiplex and heterogeneous network was performed to predict lncRNA–disease associations. The results of Leave-One-Out cross-validation (LOOCV) showed that the value of Area under the curve (AUC) was 0.68736, which was improved compared with the classical algorithm in recent years. Finally, we confirmed a few novel predicted lncRNAs associated with specific diseases like colon cancer by literature mining. In summary, MHRWRLDA contributes to predict lncRNA–disease associations.


2021 ◽  
Vol 16 ◽  
Author(s):  
Jiaxin Zhang ◽  
Quanmeng Sun ◽  
Cheng Liang

Background: Long non-coding RNAs (lncRNAs) are nonprotein-coding transcripts of more than 200 nucleotides in length. In recent years, studies have shown that long non-coding RNAs (lncRNA) play a vital role in various biological processes, complex disease diagnosis, prognosis, and treatment. Objective: Analysis of known lncRNA-disease associations and the prediction of potential lncRNA-disease associations are necessary to provide the most probable candidates for subsequent experimental validation. Methods: In this paper, we present a novel robust computational framework for lncRNA-disease association prediction by combining the ℓ1-norm graph with multi-label learning. Specifically, we first construct a set of similarity matrices for lncRNAs and diseases using known associations. Then, both lncRNA and disease similarity matrices are adaptively re-weighted to enhance the robustness via the ℓ1-norm graph. Lastly, the association matrix is updated with a graph-based multi-label learning framework to uncover the underlying consistency between the lncRNA space and the disease space. Results : We compared the proposed method with the four latest methods on five widely used data sets. The experimental results show that our method can achieve comparable performance in both five-fold cross-validation and leave-one-disease-out cross-validation prediction tasks. The case study of prostate cancer further confirms the practicability of our approach in identifying lncRNAs as potential prognostic biomarkers. Conclusion: Our method can serve as a useful tool for the prediction of novel lncRNA-disease associations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianlin Wang ◽  
Wenxiu Wang ◽  
Chaokun Yan ◽  
Junwei Luo ◽  
Ge Zhang

Drug repositioning is used to find new uses for existing drugs, effectively shortening the drug research and development cycle and reducing costs and risks. A new model of drug repositioning based on ensemble learning is proposed. This work develops a novel computational drug repositioning approach called CMAF to discover potential drug-disease associations. First, for new drugs and diseases or unknown drug-disease pairs, based on their known neighbor information, an association probability can be obtained by implementing the weighted K nearest known neighbors (WKNKN) method and improving the drug-disease association information. Then, a new drug similarity network and new disease similarity network can be constructed. Three prediction models are applied and ensembled to enable the final association of drug-disease pairs based on improved drug-disease association information and the constructed similarity network. The experimental results demonstrate that the developed approach outperforms recent state-of-the-art prediction models. Case studies further confirm the predictive ability of the proposed method. Our proposed method can effectively improve the prediction results.


2021 ◽  
Author(s):  
Bo Wang ◽  
Chao Zhang ◽  
Xiao-xin Du ◽  
Jian-fei Zhang

Abstract Background: with the development of medical science, lncRNA, originally considered as a noise gene, has been found to participate in a variety of biological activities. Nowadays, more and more studies show that lncRNA is involved in various human diseases, such as gastric cancer, prostate cancer, lung cancer, etc. However, obtaining lncRNA-disease association only through biological experiments not only costs manpower and material resources, but also gains little. Therefore, it is very important to develop effective computational models for predicting lncRNA-disease association. Results: In this paper, a new lncRNA-disease association prediction model LDAP-WMPS based on weight distribution and projection score is proposed. Based on the existing research results of disease semantic similarity, the integrated lncRNA similarity matrix and the integrated disease similarity matrix are calculated according to the disease semantic similarity and the association information between data. On this basis, the weight algorithm is combined with the improved projection algorithm to predict the lncRNA-disease association through the known lncRNA-miRNA association and miRNA-disease association. The simulation results show that under the loocv framework, the AUC of LDAP-WMPS can reach 0.8822. Better than the latest results. Through the case study of adenocarcinoma and colorectal cancer, it is proved that LDAP-WMPS can effectively infer lncRNA-disease association. Conclusions: The simulation results show that LDAP-WMPS has good prediction performance, which is an important supplement to the research of lncRNA-disease association prediction without lncRNA-disease association data. Keywords: lncRNA-miRNA association, miRNA-disease association, disease semantic similarity, Integrated lncRNA similarity, integrated disease similarity, Weight allocation algorithm, Projection score.


2021 ◽  
Vol 21 (S1) ◽  
Author(s):  
Pengwei Hu ◽  
Yu-an Huang ◽  
Jing Mei ◽  
Henry Leung ◽  
Zhan-heng Chen ◽  
...  

Abstract Background Disease-drug associations provide essential information for drug discovery and disease treatment. Many disease-drug associations remain unobserved or unknown, and trials to confirm these associations are time-consuming and expensive. To better understand and explore these valuable associations, it would be useful to develop computational methods for predicting unobserved disease-drug associations. With the advent of various datasets describing diseases and drugs, it has become more feasible to build a model describing the potential correlation between disease and drugs. Results In this work, we propose a new prediction method, called LMFDA, which works in several stages. First, it studies the drug chemical structure, disease MeSH descriptors, disease-related phenotypic terms, and drug-drug interactions. On this basis, similarity networks of different sources are constructed to enrich the representation of drugs and diseases. Based on the fused disease similarity network and drug similarity network, LMFDA calculated the association score of each pair of diseases and drugs in the database. This method achieves good performance on Fdataset and Cdataset, AUROCs were 91.6% and 92.1% respectively, higher than many of the existing computational models. Conclusions The novelty of LMFDA lies in the introduction of multimodal fusion using low-rank tensors to fuse multiple similar networks and combine matrix complement technology to predict potential association. We have demonstrated that LMFDA can display excellent network integration ability for accurate disease-drug association inferring and achieve substantial improvement over the advanced approach. Overall, experimental results on two real-world networks dataset demonstrate that LMFDA able to delivers an excellent detecting performance. Results also suggest that perfecting similar networks with as much domain knowledge as possible is a promising direction for drug repositioning.


Sign in / Sign up

Export Citation Format

Share Document