Dynamic Simulation of Wheel Drive and Suspension System in a Through-the-Road Parallel Hybrid Electric Vehicle

Author(s):  
Mohamad Yamin ◽  
Cokorda P. Mahandari ◽  
Rasyid H. Sudono
2013 ◽  
Vol 2 (1) ◽  
pp. 52 ◽  
Author(s):  
Thomas Holdstock ◽  
Aldo Sorniotti ◽  
N.A. Suryanto ◽  
Leo Shead ◽  
Fabio Viotto ◽  
...  

2014 ◽  
Vol 663 ◽  
pp. 498-503 ◽  
Author(s):  
Saiful A. Zulkifli ◽  
Syaifuddin Mohd ◽  
Nordin B. Saad ◽  
A. Rashid A. Aziz

A split-axle parallel hybrid drive-train with in-wheel motors allows for existing combustion-engine-driven vehicles to be converted into a hybrid vehicle with minor mechanical modification, resulting in a retrofit-conversion hybrid electric vehicle (HEV). This is achieved by placing electric motors in the hub of the otherwise non-driven wheels. Due to the wheel hub’s size constraint, the allowable size and power of the electric in-wheel motor that can be installed is severely restricted to less than 10 kW per wheel, which raises the concern of lack of improved performance compared to the original vehicle. This work analyzes the influence of motor sizing and efficiency on acceleration performance, fuel consumption and emission levels of three different converted hybrid vehicles, through simulation. Results provide insight into sensitivity of different-sized vehicles with varying-size engines, to the size and efficiency of the retrofitted electric motor.


Author(s):  
Christian M. Muehlfeld ◽  
Sudhakar M. Pandit

Included in this paper is the forecasting of the speed and throttle position on a thru-the-road parallel hybrid electric vehicle (HEV). This thru-the-road parallel hybrid design is implemented in a 2002 model year Ford Explorer XLT, which is also the Michigan Tech Future Truck. Data Dependent Systems (DDS) forecasting is used in a feedforward control algorithm to improve the fuel economy and to improve the drivability. It provides a one step ahead forecast, thereby allowing the control algorithm to always be a step ahead, utilizing the engine and electric motor in their most efficient ranges. This control algorithm is simulated in PSAT, a hybrid vehicle simulation package, which can estimate the fuel economy and certain performance characteristics of the vehicle. In this paper a fuel economy savings of 2.2% is shown through simulation. Charge sustainability was achieved along with drivability being improved as indicated by the reduction in number of deviations from the speed profile in the driving cycle.


Sign in / Sign up

Export Citation Format

Share Document