Performance Analysis of Amplify and Forward Relay Network over κ-µ Channel

Author(s):  
Dilip Mandloi ◽  
Rajeev Arya
Frequenz ◽  
2015 ◽  
Vol 69 (3-4) ◽  
Author(s):  
Jian Ouyang ◽  
Min Lin

AbstractIn this paper, we investigate a wireless communication system employing a multi-antenna unmanned aerial vehicle (UAV) as the relay to improve the connectivity between the base station (BS) and the receive node (RN), where the BS–UAV link undergoes the correlated Rician fading while the UAV–RN link follows the correlated Rayleigh fading with large scale path loss. By assuming that the amplify-and-forward (AF) protocol is adopted at UAV, we first propose an optimal beamforming (BF) scheme to maximize the mutual information of the UAV-assisted dual-hop relay network, by calculating the BF weight vectors and the power allocation coefficient. Then, we derive the analytical expressions for the outage probability (OP) and the ergodic capacity (EC) of the relay network to evaluate the system performance conveniently. Finally, computer simulation results are provided to demonstrate the validity and efficiency of the proposed scheme as well as the performance analysis.


2012 ◽  
Vol E95-B (4) ◽  
pp. 1345-1356 ◽  
Author(s):  
Namzilp LERTWIRAM ◽  
Gia Khanh TRAN ◽  
Keiichi MIZUTANI ◽  
Kei SAKAGUCHI ◽  
Kiyomichi ARAKI

Author(s):  
Maryam Alibeigi ◽  
Shahriar S. Moghaddam

Background & Objective: This paper considers a multi-pair wireless network, which communicates peer-to-peer using some multi-antenna amplify-and-forward relays. Maximizing the throughput supposing that the total relay nodes’ power consumption is constrained, is the main objective of this investigation. We prove that finding the beamforming matrix is not a convex problem. Methods: Therefore, by using a semidefinite relaxation technique we find a semidefinite programming problem. Moreover, we propose a novel algorithm for maximizing the total signal to the total leakage ratio. Numerical analyses show the effectiveness of the proposed algorithm which offers higher throughput compared to the existing total leakage minimization algorithm, with much less complexity. Results and Conclusion: Furthermore, the effect of different parameters such as, the number of relays, the number of antennas in each relay, the number of transmitter/receiver pairs and uplink and downlink channel gains are investigated.


Sign in / Sign up

Export Citation Format

Share Document