total leakage
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lvjun Qing ◽  
Lichen Gu ◽  
Yan Wang ◽  
Zhufeng Lei

Purpose This paper aims to revel the leakage characteristics of the bent-axis piston pump considering elastohydrodynamic deformation via a dynamic leakage model. Design/methodology/approach A dynamic leakage model of bent-axis piston pump based on elastohydrodynamic lubrication theory is proposed, which is used to present the leakage characteristics of bent-axis piston pump. The model is composed of three parts. First, the dynamic gap in the piston ring-cylinder bore interface (PRCB) is described via the elastohydrodynamic lubrication equations. Then, the PRCB leakage is presented based on the dynamic gap. Finally, combined with leakage equation of the valve plate-cylinder block interface (VPCB), the total leakage model is proposed. Through the numerical simulation and experiment, the leakage characteristics of bent-axis piston pump considering elasto-hydrodynamic deformation are studied. Findings The PRCB leakage is negatively correlated with VPCB leakage under the range of 800–1400 r/min and 1–25 MPa. When the discharge pressure is less than the critical pressure, the PRCB leakage is the main factor affecting the total leakage in bent-axis piston pump. On the contrary, the VPCB leakage is the main factor. The critical pressure increases with increasing speed Originality/value The effect of operating parameters has a significant effect on the elastic deformation of piston ring without considering wear of friction pairs in bent-axis piston pump. There is a critical phenomenon in the leakage, which is related to the operating parameters, and provides a novel idea for extracting wear information from leakage and evaluating the status of bent-piston pump.


2021 ◽  
Vol 2 (3) ◽  
pp. 281-308 ◽  
Author(s):  
Ruixian Fang ◽  
Dan Gabriel Cacuci

This work extends the investigation of higher-order sensitivity and uncertainty analysis from 3rd-order to 4th-order for a polyethylene-reflected plutonium (PERP) OECD/NEA reactor physics benchmark. Specifically, by applying the 4th-order comprehensive adjoint sensitivity analysis methodology (4th-CASAM) to the PERP benchmark, this work presents the numerical results of the most important 4th-order sensitivities of the benchmark’s total leakage response with respect to the benchmark’s 180 microscopic total cross sections, which includes 180 4th-order unmixed sensitivities and 360 4th-order mixed sensitivities corresponding to the largest 3rd-order ones. The numerical results obtained in this work reveal that the number of 4th-order relative sensitivities that have large values (e.g., greater than 1.0) is far greater than the number of important 1st-, 2nd- and 3rd-order sensitivities. The majority of those large sensitivities involve isotopes 1H and 239Pu contained in the PERP benchmark. Furthermore, it is found that for most groups of isotopes 1H and 239Pu of the PERP benchmark, the values of the 4th-order relative sensitivities are significantly larger than the corresponding 1st-, 2nd- and 3rd-order sensitivities. The overall largest 4th-order relative sensitivity S(4)σt,6g=30,σt,6g=30,σt,6g=30,σt,6g=30=2.720×106 is around 291,000 times, 6350 times and 90 times larger than the corresponding largest 1st-order, 2nd-order and 3rd-order sensitivities, respectively, and the overall largest mixed 4th-order relative sensitivity S(4)σt,630,σt,630,σt,630,σt,530=2.279×105 is also much larger than the largest 2nd-order and 3rd-order mixed sensitivities. The results of the 4th-order sensitivities presented in this work have been independently verified with the results obtained using the well-known finite difference method, as well as with the values of the corresponding symmetric 4th-order sensitivities. The 4th-order sensitivity results obtained in this work will be subsequently used on the 4th-order uncertainty analysis to evaluate their impact on the uncertainties they induce in the PERP leakage response.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110371
Author(s):  
Zhenzhou Ju ◽  
Jinfang Teng ◽  
Yuchen Ma ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang

This paper focuses on the effect of hub clearance in the design space of the highly loaded cantilevered stator. The embedded 1.5 stages of a low-speed research compressor (LSRC) were conducted with Unsteady Reynolds Average Navier-Stokes (URANS) numerical investigation, and the cantilevered stator adopts positive bowed and fore-sweep three-dimensional design. The research details that with the hub clearance increasing from 1.1% to 4.5% span, the loss coefficient and the total leakage momentum of the cantilevered stator correspond to the change of the blade loading near the hub. When designing the inlet metal angle of the rotor downstream the cantilevered stator, emphasis should be given to considering the inter-stage matching below 15% span. The mixing of leakage flow in 1.1% span clearance and 2.5% span clearance is basically completed in the S3 passage, but the mixing of leakage flow in 3.5% span clearance and 4.5% span clearance is still relatively strong downstream of S3. When calculating the relative entropy variation based on Denton’s mixing model, attention should be paid to the relationship between the leakage flow velocity affected by the hub gap and the mainstream velocity, as well as whether the mixing has been completed in the blade passage.


2021 ◽  
Vol 9 (2) ◽  
pp. 443-451
Author(s):  
K.Girinath Babu, Et. al.

Three-level isolated DC-DC converter is an attractive topology in high input voltage applications, which can provide the voltage stress of the power devices to only a half of the dc voltage and also reduce the size of dc filter requirement. But major limitations in the existing three level ZVS converter topologies are brought out with an increased inductance in the primary side and it required to provide complete ZVS of all primary devices down to light loads. By employing an external inductance in the primary of the transformer, total leakage inductance of the transformer increases which is required for realization of soft switching of the converter switches but there are some disadvantages of connecting external inductance in the primary of the transformer. To overcome all these drawbacks, the     three-phase three-level isolated DC-DC soft switching converter has been proposed in order to reduce voltage and current stresses. This converter topology requires less number of control switches and operates with an asymmetrical duty cycle control. The proposed three level DC-DC converters provide two- level voltage waveform before dc output filter, which significantly reduce the size of dc output filter. The proposed work has been implemented using MATLAB/SIMULINK and the performance of the proposed converter is verified through simulation results.  


2020 ◽  
Vol 9 (6) ◽  
pp. 2213-2221 ◽  
Author(s):  
Amir Hesam Khavari ◽  
Abdullah Munir ◽  
Zulkurnain Abdul- Malek

Resistive leakage current based condition assessment of metal oxide surge arrester (MOSA) is one of the most extensively employed technique to monitor its degradation. An extraction method is customarily required to extract the resistive component from the total leakage current. The existing methods to extract the resistive current are complex and less accurate. Therefore, this paper describes a simple and accurate circuit-based method to extract the resistive current using equivalent model and measured leakage current of the arrester. The accuracy of the proposed method is validated through experimental results on ABB’s 120 kV surge arrester, EMTP and QuickField software simulations. The performance of the method is also analyzed and verified experimentally on 72, 180 and 240 kV rated ABB’s surge arresters. The obtained results of resistive leakage current have shown the maximum error of 0.001%. Simple and easier computational steps with higher accuracy are the key benefits of the proposed technique.


2020 ◽  
Vol 12 (11) ◽  
pp. 1272-1283
Author(s):  
Shirun Chu ◽  
Fang Chen ◽  
Jun Li ◽  
Mei Yang ◽  
Jungang Yue ◽  
...  

The present study was aimed at investigating anti-bacterial effects of Bletilla striata dihydrophenanthrene (DHP) on clinically isolated Escherichia coli (E. coli), including extended spectrum β-lactamases (ESBLs)-carrying E. coli and carbapenem-resistant E. coli (CRE). The minimum inhibitory concentrations (MIC) of two extracts, DHP and residual substances extracted by ethanol and n-butanol (NBE), were determined by the serial dilution method. The light absorption value of macromolecular substances, total leakage rate, and total protein content in the nutrient solution were determined by spectrophotometric analysis. Quantification of protein expression and drug susceptibility verification were determined by mass spectroscopy. In addition, the elimination of drug-resistant plasmids was evaluated. Our data showed that the DHP had a more powerful antibacterial effect on E. coli than that of NBE, with MICs of 0.82–1.38 mg/mL and 1.07–1.51 mg/mL, respectively. In addition, DHP enhanced the absorbance value of macromolecular substances, and increased protein expression in E. coli when compared with NBE. Moreover, NBE increased the total leakage rate of small molecule substances, total protein content, and reversed drug resistance when compared with DHP. Both NBE and DHP eliminated the banding patterns related to multidrugresistant plasmids, selectively inhibited bacterial growth and reversed multidrug resistance by regulating cell membrane permeability and protein expression levels in E. coli. The reversal of drug resistance may be mediated through elimination of drug-resistant plasmids in E. coli. Therefore, DHP and NBE may be promising antibacterial drug candidates, and DHP is more likely.


2020 ◽  
Vol 150 ◽  
pp. 106371 ◽  
Author(s):  
Hailin Zhao ◽  
Hua Su ◽  
Guoding Chen
Keyword(s):  

Author(s):  
Maryam Alibeigi ◽  
Shahriar S. Moghaddam

Background & Objective: This paper considers a multi-pair wireless network, which communicates peer-to-peer using some multi-antenna amplify-and-forward relays. Maximizing the throughput supposing that the total relay nodes’ power consumption is constrained, is the main objective of this investigation. We prove that finding the beamforming matrix is not a convex problem. Methods: Therefore, by using a semidefinite relaxation technique we find a semidefinite programming problem. Moreover, we propose a novel algorithm for maximizing the total signal to the total leakage ratio. Numerical analyses show the effectiveness of the proposed algorithm which offers higher throughput compared to the existing total leakage minimization algorithm, with much less complexity. Results and Conclusion: Furthermore, the effect of different parameters such as, the number of relays, the number of antennas in each relay, the number of transmitter/receiver pairs and uplink and downlink channel gains are investigated.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093046 ◽  
Author(s):  
Lei Shi ◽  
Keqiang Wang ◽  
Ding Feng ◽  
Hong Zhang ◽  
Peng Wang

Lubricant leakage will inevitably occur during the working process of wellbore trajectory control tools. Even including the lubricant compensation system, serious leakage will still cause lacks lubrication of the internal mechanical structure as well as electronic system damaged by external infiltration fluid, especially when it comes to battery sub and other electronic equipment. Seal system leakage prediction method was presented based on the assumption of steady gap flow. It is assumed that there is a constant gap between the lip seal and the rotating shaft, the gap height is determined by oil film thickness, and the length of the gap was determined by the contact analysis using the Mooney–Rivlin constitutive model. The analysis results show that the contact length between the primary seal lip and the rotary shaft is about 0.1 mm under the condition of ensuring the contact between the deputy seal lip and the rotary shaft. The overall lubricant leakage finite element analysis model was established, and the relationship between the internal lubricant pressure of the tool and the total leakage was obtained. The results of analysis indicate that under the internal pressure of 0.03 MPa, the lubricant leakage is approximately 6 mL/h, which was verified by experiments.


2020 ◽  
Vol 56 (3) ◽  
pp. 152
Author(s):  
ZHAO Hailin ◽  
CHEN Guoding ◽  
SU Hua
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document