Shifted Chebyshev Wavelets and Shifted Legendre Wavelets—Preliminaries

Author(s):  
G. Hariharan
2019 ◽  
Vol 52 (1) ◽  
pp. 336-346 ◽  
Author(s):  
Fateme Ghomanjani ◽  
Stanford Shateyi

AbstractA numerical technique for one-dimensional Bratu’s problem is displayed in this work. The technique depends on Bernstein polynomial approximation. Numerical examples are exhibited to verify the efficiency and accuracy of the proposed technique. In this sequel, the obtained error was shown between the proposed technique, Chebyshev wavelets, and Legendre wavelets. The results display that this technique is accurate.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. M. Maalek Ghaini ◽  
F. Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.


2021 ◽  
Vol 5 (3) ◽  
pp. 70
Author(s):  
Esmail Bargamadi ◽  
Leila Torkzadeh ◽  
Kazem Nouri ◽  
Amin Jajarmi

In this paper, by means of the second Chebyshev wavelet and its operational matrix, we solve a system of fractional-order Volterra–Fredholm integro-differential equations with weakly singular kernels. We estimate the functions by using the wavelet basis and then obtain the approximate solutions from the algebraic system corresponding to the main system. Moreover, the implementation of our scheme is presented, and the error bounds of approximations are analyzed. Finally, we evaluate the efficiency of the method through a numerical example.


Author(s):  
Fakhrodin Mohammadi ◽  
Parastoo Adhami

AbstractIn this paper, we present a computational method for solving stochastic Volterra–Fredholm integral equations which is based on the second kind Chebyshev wavelets and their stochastic operational matrix. Convergence and error analysis of the proposed method are investigated. Numerical results are compared with the block pulse functions method for some non-trivial examples. The obtained results reveal efficiency and reliability of the proposed wavelet method.


Sign in / Sign up

Export Citation Format

Share Document