Collective Motion of Filamentous Bacteria

Author(s):  
Daiki Nishiguchi
2019 ◽  
Vol 133 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Vicenç Quera ◽  
Elisabet Gimeno ◽  
Francesc S. Beltran ◽  
Ruth Dolado

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-488-C6-489 ◽  
Author(s):  
C. J. Pethick ◽  
H. Smith
Keyword(s):  

2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


1992 ◽  
Vol 5 (6) ◽  
Author(s):  
H. L. B. M. Klaasen ◽  
J. P. Koopman ◽  
F. G. J. Poelma ◽  
M. E. Van Den Brink ◽  
M. H. Bakker ◽  
...  

2012 ◽  
Vol 18 (4) ◽  
pp. 705
Author(s):  
Ping WANG ◽  
Zhisheng YU ◽  
Rong QI ◽  
Hongxun ZHANG

1991 ◽  
Vol 23 (4-6) ◽  
pp. 899-905 ◽  
Author(s):  
Y. Matsuzawa ◽  
T. Mino

Activated sludge mixed cultures were cultivated with a glucose containing substrate in order to investigate the relationship between the feeding pattern (continuous or intermittent feeding) and the glycogen reservation capacity of activated sludge. An experimental method to measure the maximum capacity of glycogen reservation in the sludge was developed. Sludge with higher glycogen reservation capacity has an ability to synthesize glycogen faster, which ensures the higher glucose uptake. Therefore, sludge which has high glycogen reservation capacity becomes predominant in intermittently fed reactors. When the feeding pattern was changed from continuous feeding to intermittent feeding, a filamentous bacterium, Type 1701, started to decrease and a gram positive tetrad coccus became predominant. When the feeding pattern was returned to continuous feeding, Type 1701 re-appeared. Type 1701 has lower glycogen reservation capacity than the tetrad coccus. Therefore, the former cannot dominate over the latter in intermittently fed reactors.


Sign in / Sign up

Export Citation Format

Share Document