A Novel Horizontal Liquid–Liquid Flow Pattern Map Using Dimensionless Number Groups

Author(s):  
Olusegun Samson Osundare ◽  
Liyun Lao ◽  
Gioia Falcone
Author(s):  
Zhen Cao ◽  
Zan Wu ◽  
Mehdi Sattari Najafabadi ◽  
Bengt Sunden

In the present work, liquid-liquid flow patterns positioned 40 mm downstream the inlet of microchannels were experimentally investigated, including the effect of hydraulic diameter (Dh), liquid properties, aspect ratio of cross section (a) and inlet configuration. Deionized water, butanol, toluene and hexane were selected as probe fluids with water as the continuous phase. Cross-inlet microchannels of 200 μm * 200 μm (Dh = 200 μm), 400 μm * 400 μm (Dh = 400 μm), 600 μm * 600 μm (Dh = 600 μm) and 600 μm * 300 μm (Dh = 400 μm) as well as a T-inlet microchannel of 600 μm * 300 μm (Dh = 400 μm) were tested. For the tests in the microchannels of Dh = 600 μm and 400 μm, the superficial velocities of the dispersed phase and continuous phase varied between 0.3 mm/s and 12 mm/s and between 0.2 mm/s and 50 mm/s, while in the microchannel of Dh = 200 μm the superficial velocities of the dispersed phase and continuous phase ranged from 0.3 mm/s to 21 mm/s and from 0.2 mm/s to 150 mm/s. Annular flow, deformed interface flow, slug flow, intermittent flow, droplet and slug train flow and droplet flow were detected in the experiment. It shows that flow patterns depend on the hydraulic diameter, liquid properties, inlet configuration and aspect ratio significantly. Dimensionless analysis was employed to develop universal flow pattern maps regardless of the hydraulic diameter and liquid properties. It is indicated that an acceptable universal flow pattern map was derived based on the redefined dimensionless number Rei0.2 *Wei0.4, especially for the boundaries of the slug-droplet transitions, which are independent on the hydraulic diameter to some extent. The other dimensionless number Wei*Ohi worked rather effectively to develop a universal flow pattern map independent on liquid properties. The boundaries of the flow pattern transitions in different liquid-liquid flow almost overlap with each other.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4355
Author(s):  
Olusegun Samson Osundare ◽  
Gioia Falcone ◽  
Liyun Lao ◽  
Alexander Elliott

Accurate predictions of flow patterns in liquid-liquid flow are critical to the successful design and operation of industrial and geo-energy systems where two liquids are jointly transported. Unfortunately, there is no unified flow pattern map, because all published maps are based on limited ranges of dimensional parameters. Dimensional analysis was performed on oil-water horizontal flows, to obtain some relevant dimensionless parameter groups (DPG) for constructing flow pattern maps (FPM). The following combinations of DPG were used: (i) the ratio of mixture Reynolds number to Eötvös number versus water fraction, (ii) the ratio of Weber number to Eötvös number versus water fraction, (iii) the mixture Froude number versus water fraction, (iv) the water Froude number versus oil Froude number, (v) the ratio of gravity force to viscous force versus water fraction. From twelve published experimental studies, 2696 data points were gathered and analysed covering a variety of flow patterns including stratified, stratified mixed, dispersed oil in water, dispersed water in oil, annular and slug flows. Based on the performed analysis, it was found that flow patterns could occupy more than one isolated region on the DPG-based flow pattern map. None of the combinations of DPG can mark out all the considered flow patterns, however, some combinations of DPG are particularly suitable for marking out the regions associated with some flow patterns.


2012 ◽  
Vol 19 (4) ◽  
pp. 759-766 ◽  
Author(s):  
Zhiqiang Sun ◽  
Hui Gong

Abstract Gas-liquid flows abound in a great variety of industrial processes. Correct recognition of the regimes of a gasliquid flow is one of the most formidable challenges in multiphase flow measurement. Here we put forward a novel approach to the classification of gas-liquid flow patterns. In this method a flow-pattern map is constructed based on the average energy of intrinsic mode function and the volumetric void fraction of gas-liquid mixture. The intrinsic mode function is extracted from the pressure fluctuation across a bluff body using the empirical mode decomposition technique. Experiments adopting air and water as the working fluids are conducted in the bubble, plug, slug, and annular flow patterns at ambient temperature and atmospheric pressure. Verification tests indicate that the identification rate of the flow-pattern map developed exceeds 90%. This approach is appropriate for the gas-liquid flow pattern identification in practical applications.


Author(s):  
Caio Araujo ◽  
Tiago Ferreira Souza ◽  
Maurício Figueiredo ◽  
valdir estevam ◽  
Ana Maria Frattini Fileti

Author(s):  
André Mendes Quintino ◽  
Davi Lotfi Lavor Navarro da Rocha ◽  
Oscar Mauricio Hernandez Rodriguez

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2440
Author(s):  
Youngwoo Kim ◽  
Dae Yeon Kim ◽  
Kyung Chun Kim

A flow visualization study was carried out for flow boiling in a rectangular channel filled with and without metallic random porous media. Four main flow patterns are observed as intermittent slug-churn flow, churn-annular flow, annular-mist flow, and mist flow regimes. These flow patterns are clearly classified based on the high-speed images of the channel flow. The results of the flow pattern map according to the mass flow rate were presented using saturation temperatures and the materials of porous media as variables. As the saturation temperatures increased, the annular-mist flow regime occupied a larger area than the lower saturation temperatures condition. Therefore, the churn flow regime is narrower, and the slug flow more quickly turns to annular flow with the increasing vapor quality. The pattern map is not significantly affected by the materials of porous media.


Author(s):  
Pengbo Yin ◽  
Pan Zhang ◽  
Xuewen Cao ◽  
Xiang Li ◽  
Yuhao Li ◽  
...  

2018 ◽  
Vol 98 ◽  
pp. 24-35 ◽  
Author(s):  
Zhi-Qiang Yang ◽  
Gao-Fei Chen ◽  
Xiao-Ru Zhuang ◽  
Qing-Lu Song ◽  
Zeng Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document