Invasive Weed Optimized Drift Parameter Involved Differential Protection Scheme

Author(s):  
D. J. Abhishek ◽  
P. Jagadeesh ◽  
N. Srinivasu ◽  
Ch. Durga Prasad
Author(s):  
Mahyar Abasi ◽  
◽  
Ahmad Torabi Farsani ◽  
Arash Rohani ◽  
Arsalan Beigzadeh ◽  
...  

2020 ◽  
Vol 6 ◽  
pp. 243-259
Author(s):  
Senthil Krishnamurthy ◽  
Ryan Jones ◽  
Manduleli Alfred Mquqwana

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 967 ◽  
Author(s):  
Myeong-Hoon Song ◽  
Sang-Hee Kang ◽  
Nam-Ho Lee ◽  
Soon-Ryul Nam

This paper proposes an IEC 61850-based centralized busbar differential protection scheme, in which data desynchronization between intelligent electronic devices (IEDs) leads to differential current errors. As the differential current errors could result in erroneous operation of the centralized busbar differential protection, data desynchronization should be compensated for. The main causes of data desynchronization are subdivided into measurement timing and time synchronization errors. In this paper, the first-order Lagrange interpolation polynomial is used to compensate for measurement timing errors and the voltage angle differences between IEDs are used to compensate for time synchronization errors. The centralized busbar differential protection is tested using a real-time digital simulator and IEC 61850-based IEDs, which are implemented with the MMS-EASE Lite library and Smart Grid Infrastructure Evaluation Module. The test results show that the data desynchronization compensation can significantly reduce differential current errors, and thus prevent erroneous operation of the IEC 61850-based centralized busbar differential protection.


2015 ◽  
Vol 16 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Ashesh Mukeshbhai Shah ◽  
Bhavesh Bhalja

Abstract This paper presents a new adaptive differential protection scheme which efficiently adapts the change in tap position of a power transformer. The proposed scheme is based on analytical derivation of pick-up and slope of the differential relay characteristic. By acquiring information such as rating & connection of CTs and present tap position as input, the proposed scheme enhances sensitivity of differential relay during internal faults. This is accomplished either by decreasing pick-up and/or adjusting slope of the differential characteristic of the relay in case of change in tap position. Numerous test cases consisting of various types of internal and external faults have been simulated for an existing power transformer of Gujarat Energy Transmission Corporation Limited (GETCO), Gujarat, India using PSCAD/EMTDC software package. The proposed scheme increases percentage of winding to be protected during internal faults for power transformers having different ratings and connections compared to the conventional differential protection scheme. Furthermore, it has been observed that the detection sensitivity during special types of turn-to-turn and inter-winding faults with varying fault resistances is also enhanced compared to the conventional scheme. Moreover, it equally maintains stability during CT saturation condition. At the end, comparative evaluation of the proposed scheme with the existing schemes clearly indicates superiority of the proposed adaptive scheme.


Sign in / Sign up

Export Citation Format

Share Document