Fast Fourier Transform in Planar3D Model Using an Explicit Numerical Integration Scheme

Author(s):  
Nikita Mushchak ◽  
Egor Starobinskii ◽  
Sergei Hlopin ◽  
Egor Shel
Author(s):  
Tsu-te Wu

This paper presents an improved methodology for evaluating the dynamic responses of shipping casks subjected to the sequential HAC impact loads. The methodology utilizes the import technique of the finite-element mesh and the analytical results form one dynamic analysis using explicit numerical integration scheme into another dynamic analysis also using explicit numerical integration scheme. The new methodology presented herein has several advantages over conventional methods. An example problem is analyzed to illustrate the application of the present methodology in evaluating the structural responses of a shipping cask to the sequential HAC loading.


1974 ◽  
Vol 96 (2) ◽  
pp. 121-130 ◽  
Author(s):  
H. S. Levine ◽  
V. Svalbonas

This paper describes the latest addition to the STARS system of computer programs, STARS-2P, for the plastic, large deflection analysis of axisymmetrically loaded shells of revolution. The STARS system uses a numerical integration scheme to solve the governing differential equations. Several unique features for shell of revolution programs that are included in the STARS-2P program are described. These include orthotropic nonlinear kinematic hardening theory, a variety of shell wall cross sections and discrete ring stiffeners, cyclic and nonproportional mechanical and thermal loading capability, the coupled axisymmetric large deflection elasto-plastic torsion problem, an extensive restart option, arbitrary branching capability, and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions. To affirm the validity of the results, comparisons with available theoretical and experimental data are presented.


2002 ◽  
Vol 18 (1) ◽  
pp. 17-27
Author(s):  
Jopan Sheng ◽  
Chung-Yue Wang ◽  
Kuo-Jui Shen

ABSTRACTIn this paper, a modified numerical integration scheme is presented that improves the accuracy of the numerical integration of the Galerkin weak form, within the integration cells of the analyzed domain in the element-free methods. A geometrical interpretation of the Gaussian quadrature rule is introduced to map the effective weighting territory of each quadrature point in an integration cell. Then, the conventional quadrature rule is extended to cover the overlapping area between the weighting territory of each quadrature point and the physical domain. This modified numerical integration scheme can lessen the errors due to misalignment between the integration cell and the boundary or interface of the physical domain. Some numerical examples illustrate that this newly proposed integration scheme for element-free methods does effectively improve the accuracy when solving solid mechanics problems.


Sign in / Sign up

Export Citation Format

Share Document