Soil Organic Carbon and Nitrogen in Forest Soils of Germany

Author(s):  
R. Brumme ◽  
M. Egenolf ◽  
C. Aydin ◽  
J. Block ◽  
K.J. Meiwes ◽  
...  

Wetlands ◽  
2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Yu An ◽  
Yang Gao ◽  
Xiaohui Liu ◽  
Shouzheng Tong ◽  
Bo Liu ◽  
...  






Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 632 ◽  
Author(s):  
Kathryn Conrad ◽  
Ram C. Dalal ◽  
Ryosuke Fujinuma ◽  
Neal W. Menzies

Stabilisation and protection of soil organic carbon (SOC) in macroaggregates and microaggregates represents an important mechanism for the sequestration of SOC. Legume-based grass pastures have the potential to contribute to aggregate formation and stabilisation, thereby leading to SOC sequestration. However, there is limited research on the C and N dynamics of soil organic matter (SOM) fractions in deep-rooted legume leucaena (Leucaena leucocephala)–grass pastures. We assessed the potential of leucaena to sequester carbon (C) and nitrogen (N) in soil aggregates by estimating the origin, quantity and distribution in the soil profile. We utilised a chronosequence (0–40 years) of seasonally grazed leucaena stands (3–6 m rows), which were sampled to a depth of 0.3 m at 0.1-m intervals. The soil was wet-sieved for different aggregate sizes (large macroaggregates, >2000 µm; small macroaggregates, 250–2000 µm; microaggregates, 53–250 µm; and <53 µm), including occluded particulate organic matter (oPOM) within macroaggregates (>250 µm), and then analysed for organic C, N and δ13C and δ15N. Leucaena promoted aggregation, which increased with the age of the leucaena stands, and in particular the formation of large macroaggregates compared with grass in the upper 0.2 m. Macroaggregates contained a greater SOC stock than microaggregates, principally as a function of the soil mass distribution. The oPOM-C and -N concentrations were highest in macroaggregates at all depths. The acid nonhydrolysable C and N distribution (recalcitrant SOM) provided no clear distinction in stabilisation of SOM between pastures. Leucaena- and possibly other legume-based grass pastures have potential to sequester SOC through stabilisation and protection of oPOM within macroaggregates in soil.



2014 ◽  
Vol 328 ◽  
pp. 103-116 ◽  
Author(s):  
Claudia Guidi ◽  
Lars Vesterdal ◽  
Damiano Gianelle ◽  
Mirco Rodeghiero


2015 ◽  
Vol 5 ◽  
Author(s):  
Elías Luis Calvo ◽  
Francisco Casás Sabarís ◽  
Juan Manuel Galiñanes Costa ◽  
Natividad Matilla Mosquera ◽  
Felipe Macías Vázquez ◽  
...  

The soil organic carbon content was analyzed in more than 7 000 soil samples under different land uses, climates and lithologies from northern Spain (Galicia, Asturias, Cantábria y País Vasco). GIS maps (1:50 000) were made of the % SOC and SOC stocks. The % SOC varies according to land use (higher in forest and scrub soils and lower in agricultural soils) and climate, and there is a highly significant correlation between SOC content and mean annual precipitation. There are significant differences between the soils of Galicia/Western Asturias (GA<sub>w</sub>) and those of the rest of the study area (Central and Eastern Asturias, Cantabria and País Vasco) (A<sub>ce</sub>CV), although these are neighbouring regions. In forest and/or scrub soils with a <em>udic</em> soil moisture regime, in GA<sub>w</sub>, the SOC is usually &gt; 7% and the average stocks 260 t ha<sup> -1</sup> (0-30 cm), and &gt;340 t ha<sup>-1</sup> (0-50 cm) in soils with thick organic matter rich horizons (&gt; 40 cm); these values greatly exceed the average contents observed in forest soils from temperate zones. Under similar conditions of vegetation and climate in soils of A<sub>ce</sub>CV the SOC average is 3% and the mean stocks 90-100 t ha<sup>-1</sup> (0-30 cm). The <em>andic</em> character of acid forest soils in GA<sub>w</sub> and the formation of C-Al,Fe complexes are pointed out as the SOC stabilization mechanism, in contrast to the neutral and calcareous soils that predominate in A<sub>ce</sub>CV, where the main species of OC are easily biodegradable.



Sign in / Sign up

Export Citation Format

Share Document