Plot Level Spatial Variability of Soil Organic Carbon, Nitrogen, and Their Stable Isotopic Compositions in Temperate Managed Forest Soils of Atlantic Canada

Soil Science ◽  
2013 ◽  
Vol 178 (8) ◽  
pp. 400-416 ◽  
Author(s):  
Asfaw Bekele ◽  
Lisa Kellman ◽  
Hugo Beltrami
Geoderma ◽  
2010 ◽  
Vol 154 (3-4) ◽  
pp. 302-310 ◽  
Author(s):  
D.D. Wang ◽  
X.Z. Shi ◽  
X.X. Lu ◽  
H.J. Wang ◽  
D.S. Yu ◽  
...  

Pedosphere ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Dong-Sheng YU ◽  
Zhong-Qi ZHANG ◽  
Hao YANG ◽  
Xue-Zheng SHI ◽  
Man-Zhi TAN ◽  
...  

2016 ◽  
Vol 13 (16) ◽  
pp. 4777-4788 ◽  
Author(s):  
Qian Zhao ◽  
Simon R. Poulson ◽  
Daniel Obrist ◽  
Samira Sumaila ◽  
James J. Dynes ◽  
...  

Abstract. Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to understand the amount, spatial variability, and characteristics of Fe-bound OC in natural soils. In this study, we investigated the concentrations and characteristics of Fe-bound OC in soils collected from 14 forests in the United States and determined the impact of ecogeographical variables and soil physicochemical properties on the association of OC and Fe minerals. On average, Fe-bound OC contributed 37.8 % of total OC (TOC) in forest soils. Atomic ratios of OC : Fe ranged from 0.56 to 17.7, with values of 1–10 for most samples, and the ratios indicate the importance of both sorptive and incorporative interactions. The fraction of Fe-bound OC in TOC (fFe-OC) was not related to the concentration of reactive Fe, which suggests that the importance of association with Fe in OC accumulation was not governed by the concentration of reactive Fe. Concentrations of Fe-bound OC and fFe-OC increased with latitude and reached peak values at a site with a mean annual temperature of 6.6 °C. Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC also was more enriched in 13C compared to the non-Fe-bound OC, but C ∕ N ratios did not differ substantially. In summary, 13C-enriched OC with less aliphatic carbon and more carboxylic carbon was associated with Fe minerals in the soils, with values of fFe-OC being controlled by both sorptive and incorporative associations between Fe and OC. Overall, this study demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C in forest soils and uncovers the governing factors for the spatial variability and characteristics of Fe-bound OC.


2015 ◽  
Vol 5 ◽  
Author(s):  
Elías Luis Calvo ◽  
Francisco Casás Sabarís ◽  
Juan Manuel Galiñanes Costa ◽  
Natividad Matilla Mosquera ◽  
Felipe Macías Vázquez ◽  
...  

The soil organic carbon content was analyzed in more than 7 000 soil samples under different land uses, climates and lithologies from northern Spain (Galicia, Asturias, Cantábria y País Vasco). GIS maps (1:50 000) were made of the % SOC and SOC stocks. The % SOC varies according to land use (higher in forest and scrub soils and lower in agricultural soils) and climate, and there is a highly significant correlation between SOC content and mean annual precipitation. There are significant differences between the soils of Galicia/Western Asturias (GA<sub>w</sub>) and those of the rest of the study area (Central and Eastern Asturias, Cantabria and País Vasco) (A<sub>ce</sub>CV), although these are neighbouring regions. In forest and/or scrub soils with a <em>udic</em> soil moisture regime, in GA<sub>w</sub>, the SOC is usually &gt; 7% and the average stocks 260 t ha<sup> -1</sup> (0-30 cm), and &gt;340 t ha<sup>-1</sup> (0-50 cm) in soils with thick organic matter rich horizons (&gt; 40 cm); these values greatly exceed the average contents observed in forest soils from temperate zones. Under similar conditions of vegetation and climate in soils of A<sub>ce</sub>CV the SOC average is 3% and the mean stocks 90-100 t ha<sup>-1</sup> (0-30 cm). The <em>andic</em> character of acid forest soils in GA<sub>w</sub> and the formation of C-Al,Fe complexes are pointed out as the SOC stabilization mechanism, in contrast to the neutral and calcareous soils that predominate in A<sub>ce</sub>CV, where the main species of OC are easily biodegradable.


2021 ◽  
Vol 4 ◽  
Author(s):  
Ellen Desie ◽  
Bart Muys ◽  
Boris Jansen ◽  
Lars Vesterdal ◽  
Karen Vancampenhout

Despite the general agreement that maximizing carbon storage and its persistence in forest soils are top priorities in the context of climate change mitigation, our knowledge on how to steer soil organic carbon (SOC) through forest management remains limited. For some soils, tree species selection based on litter quality has been shown a powerful measure to boost SOC stocks and stability, whereas on other locations similar efforts result in insignificant or even opposite effects. A better understanding of which mechanisms underpin such context-dependency is needed in order to focus and prioritize management efforts for carbon sequestration. Here we discuss the key role of acid buffering mechanisms in belowground ecosystem functioning and how threshold behavior in soil pH mediates tree species effects on carbon cycling. For most forests around the world, the threshold between the exchange buffer and the aluminum buffer around a pH-H2O of 4.5 is of particular relevance. When a shift between these buffer domains occurs, it triggers changes in multiple compartments in the soil, ultimately altering the way carbon is incorporated and transformed. Moreover, the impact of such a shift can be amplified by feedback loops between tree species, soil biota and cation exchange capacity (CEC). Hence, taking into account non-linearities related to acidity will allow more accurate predictions on the size and direction of the effect of litter quality changes on the way soil organic carbon is stored in forest soils. Consequently, this will allow developing more efficient, context-explicit management strategies to optimize SOC stocks and their stability.


2010 ◽  
Vol 5 (4) ◽  
pp. 252-262
Author(s):  
M.C. Law ◽  
S.K. Balasundra ◽  
M.H.A. Husni ◽  
O.H. Ahmed ◽  
Mohd. Hanif Haru

2018 ◽  
Vol 426 (1-2) ◽  
pp. 267-286 ◽  
Author(s):  
Laure N. Soucémarianadin ◽  
Lauric Cécillon ◽  
Bertrand Guenet ◽  
Claire Chenu ◽  
François Baudin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document