An alternative approach to solve plane-strain crack-tip stress field for orthotropic perfectly-plastic solids

1993 ◽  
Vol 64 (4) ◽  
pp. R77-R87 ◽  
Author(s):  
Yao Zheng ◽  
Zupei Yuan
2010 ◽  
Vol 168-170 ◽  
pp. 1252-1255
Author(s):  
Zhong Guo Zhang ◽  
Ya Dong Bian ◽  
Bin Gao

The crack tip stress field of rock is analyzed under blast loading, and the crack arrest criterion, the conditions of rock crack initiation and crack extension are presented in this paper. The study will help the design of maintaining the stability of stope drift active workings.


2004 ◽  
Vol 85 (3) ◽  
pp. 712-714 ◽  
Author(s):  
Kee-Sun Sohn ◽  
Soo Yeon Seo ◽  
Yong Nam Kwon ◽  
Hee Dong Park

1990 ◽  
Vol 57 (1) ◽  
pp. 40-49 ◽  
Author(s):  
F. Z. Li ◽  
J. Pan

Plane-strain crack-tip stress and strain fields are presented for materials exhibiting pressure-sensitive yielding and plastic volumetric deformation. The yield criterion is described by a linear combination of the effective stress and the hydrostatic stress, and the plastic dilatancy is introduced by the normality flow rule. The material hardening is assumed to follow a power-law relation. For small pressure sensitivity, the plane-strain mode I singular fields are found in a separable form similar to the HRR fields (Hutchinson, 1968a, b; Rice and Rosengren, 1968). The angular distributions of the fields depend on the material-hardening exponent and the pressure-sensitivity parameter. The low-hardening solutions for different degrees of pressure sensitivity are found to agree remarkably with the corresponding perfectly-plastic solutions. An important aspect of the effects of pressure-sensitive yielding and plastic dilatancy on the crack-tip fields is the lowering of the hydrostatic stress and the effective stress directly ahead of the crack tip, which may contribute to the experimentally-observed enhancement of fracture toughness in some ceramic and polymeric composite materials.


Sign in / Sign up

Export Citation Format

Share Document