poisson ratio
Recently Published Documents


TOTAL DOCUMENTS

539
(FIVE YEARS 143)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 58 (4) ◽  
pp. 158-170
Author(s):  
Kiruthika Chandrasekaran ◽  
Lavanya Prabha Srinivasan ◽  
Neelamegam Meyappan

Resin Concrete uses polymeric resin to replace cement concrete. Four types of polyester resins were identified with Methyl methacrylate as catalyst, calcium carbonate and fly ash as fillers along with river sand and coarse aggregate size of 10mm, 6mm were used to produce resin concrete. Seventy-two trial batches were carried out for preliminary investigation targeting compressive strength of more than 80 MPa (11.6 ksi) and four batches were shortlisted. These four batches along with the addition of glass fiber were taken for detailed investigation of stress strain behavior, young�s modulus, Poisson ratio, various correlative equations among their mechanical properties and durability properties. Developed mix can be recommended for manufacturing various polymer products.


2021 ◽  
pp. 1-8
Author(s):  
Meryem Ziati ◽  
◽  
Hamid Ez Zahraouy ◽  

We present a first-principles study of the elastic and thermodynamic properties of the Sr2 RuO4 -xFx alloy (x = 0, 2). Computations are carried out using the WIEN2K code based on a non-relativistic full–potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT). The Voigt–Reuss–Hill approximation method is applied to analyze the elastic constants, Poisson ratio, bulk, shear, and Young modulus at zero pressure and temperature using ELASTIC 1.0 software. The Sr2 RuO4 and Sr2 RuO2 F2 tetragonal phases are mechanically stable because the elastic constants satisfy Born’s mechanical stability condition. In addition, we performed a quasi-harmonic Debye model calculation using the GIBBS2 package to predict the thermodynamic properties and their temperature and pressure dependencies. Thermodynamic parameters such as the Gibbs free energy, heat capacity, Grüneisen parameter, and Debye temperature are successfully obtained and discussed


2021 ◽  
Author(s):  
Megha Goyal ◽  
M.M. Sinha

Abstract Heusler compounds are a tuneable class of material with a cubic crystal structure that can serve as a platform to study the topological phase of a material. These materials have numerous technological and scientific applications. So, in the present work, the mechanical, thermodynamical, and thermoelectric properties of LaAuPb in the topological phase have been reported by using density functional theory and Boltzmann transport theory. LaAuPb is mechanically stable, and the Poisson ratio reveals its ductile nature. The specific heat of the proposed compound at room temperature is 73.94 J K-1 mol-1 at constant volume. Debye’s temperature is estimated to be 188.64K. Moreover, the lattice thermal conductivity of the compound is 14.64 W/mK and 3.66 W/mK at 300K and 1200K, respectively. Good thermoelectric response of LaAuPb can be confirmed by its high value of the figure of merit (0.46) at 1200K. Hence, it is a potential material for thermoelectric applications. This work will help future researchers to better understand the stability, nature and behaviour of LaAuPb in material fabrication.


Technologic ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Reinata Avhycanti Laventina ◽  
Kartika Setiawati

Jalan Tol Trans Sumatera Pekanbaru-Dumai merupakan ruas jalan tol utama karena digunakan untuk mobilisasi dan bisnis kota Pekanbaru-Dumai. Timbunan pada badan Jalan Tol Trans Sumatera merupakan faktor penting untuk struktur geoteknik di sekitar lereng yang berada di badan jalan tol. Timbunan tanah pada badan jalan tol digunakan untuk pencapaian elevasi akhir subgrade tanah. Pengaruh analisis stabilitas lereng serta penurunan konsolidasi tanah sangat berpengaruh pada analisis struktur geoteknik untuk timbunan tanah. Permasalahan yang terjadi adalah terjadi penurunan yang disertai kelongsoran sebagian lebar badan jalan di STA 79+ 615. Jalan Tol Trans Sumatera Seksi V Pekanbaru-Dumai dan box culvert tanah dasar mengalami penurunan. Kerusakan yang terjadi pada kedua lokasi berupa penurunan disertai retakan arah jalan dengan pergeseran tanah kearah samping (longsor). Analisis terhadap sisi geoteknik menggunakan perkuatan salah satunya menggunakan struktur pile embankment. Pada analisis perkuatan dan penanganan timbunan menggunakan struktur pile embankment akan dilakukan analisis faktor keamanan timbunan jalan. Parameter perkuatan dan penanganan timbunan tanah (sudut geser dalam, poisson ratio, kohesi, modulus elastisitas, dan muka air tanah) dapat digunakan untuk analisis struktur geoteknik berikutnya. Analisis perkuatan akan menggunakan aplikasi Plaxis (program analisis geoteknik dengan basis finite element method). Direncanakan untuk pile embankment dengan tipe spun pile dapat mencapai nilai safety factor 1,5 (faktor keamanan terhadap stabilitas global minimum SNI 8460-2017) dan mencapai nilai safety factor 1,1 (faktor keamanan terhadap beban gempa SNI 8460-2017) dengan dimensi spun pile diameter 60 cm, panjang efektif 10-12 meter dengan jarak spasi antar spun pile adalah 3 meter, dan tebal LTP (Load Transfer Platform) sebesar 1,8 meter.


2021 ◽  
Author(s):  
Reddy B. S. ◽  
Ramana Rao U. V ◽  
S Satyanarayana T ◽  
Ramakrishna C H ◽  
Ramya Sri A. R ◽  
...  

Abstract Permo-Triassic formations in Mandapetta field from eastern onshore, India possesses historical drilling challenges in terms of wellbore instability, non-productive time and poor hole condition in deep higher stressed formations. Lack of acquiring reliable log data and problems in recovering good quality cores present difficulties in proper formation evaluation and zone selection for testing. Historical well test results in target K-Formation has been not encouraging despite good gas shows during drilling. Estimated formation pressure gradient ranges 1.45sg-1.52sg. Layered shale with coal and tight sandstone in same open hole section pose risks of mud losses and poor cement job. Present study highlights the workflow adopted to improve drilling and completion in open hole section of more than 1000 m with varying lithology being drilled successfully. Advanced 3D anisotropic acoustic measurements acquired are used to estimate anisotropic elastic properties (vertical and horizontal Young's modulus and Poisson's ratio) in the overlying shales. Horizontal tectonics has been determined across stress induced anisotropic layers. This approach provides better understanding of formations and stress distribution. Thomsen Gamma values range 0.1 to 0.4 in shale layers of overburden formations. In order to minimize uncertainty in 8.5inch section while drilling, advanced logs were acquired in 12.25inch hole section to estimate tectonics at well location while constraining ratio of horizontal to vertical Young's modulus and Poisson Ratio in shale layers based on Thomsen Gamma and clay volume. Analysis suggested typical VTI anisotropy of 15%-20% in shale layers. Inverted direct horizontal strain parameters at well location suggested the ratio of maximum to minimum horizontal stress to vary 1.15-1.23. Mud weight used while drilling 8.5inch section ranged 1.49sg1.52sg against the recommended mud weight of 1.50sg-1.52sg while pumping sealing agents to prevent mud losses in coal layers. Flow rate was maintained on lower values to minimize ECD values. Hole condition improved significantly with no issues in logging. Post-drill anisotropic rock mechanics model suggested good quality sandstone in target source formation with usual conventional reservoir in shallower formation. Zone was selected based on permeability, breakdown and completion quality for perforations. Analysis of high-quality sonic slowness helped to identify possible gas reservoir in laminated source rock. There was stress contrast of 2000psi-2500psi among reservoir layers and shale stress barriers. Implemented workflow and successful execution helped to drill the well 5 days earlier than plan with no major drilling incidents. Successful core recovery for Shale Gas evaluation was also possible due to better wellbore quality. Initial testing of K-Formation produced gas with significant improved flow rate by 150% without any stimulation for the 1st time in the history of the field.


2021 ◽  
Vol 5 (12) ◽  
pp. 322
Author(s):  
Alexandre Luiz Souto Borges ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Sabrina Elise Moecke ◽  
Raquel Coutinho de Morais ◽  
João Paulo Mendes Tribst

Objectives: To characterize the mechanical properties of different resin-composites for dental application. Methods: Thirteen universal dentin shade composites (n = 10) from different manufacturers were evaluated (4 Seasons, Grandio, Venus, Amelogen Plus, P90, Z350, Esthet-X, Amaris, Vita-l-escence, Natural-Look, Charisma, Z250 and Opallis). The polymerization shrinkage percentage was calculated using a video-image recording device (ACUVOL—Bisco Dental) and the hygroscopic expansion was measured after thermocycling aging in the same equipment. Equal volumes of material were used and, after 5 min of relaxation, baseline measurements were calculated with 18 J of energy delivered from the light-curing unit. Specimens were stored in a dry-dark environment for 24 h then thermocycled in distilled water (5–55 °C for 20,000 cycles) with volume measurement at each 5000 cycles. In addition, the pulse-excitatory method was applied to calculate the elastic modulus and Poisson ratio for each resin material and the degree of conversion was evaluated using Fourier transform infrared spectroscopy. Results: The ANOVA showed that all composite volumes were influenced by the number of cycles (α = 0.05). Volumes at 5 min post-polymerization (12.47 ± 0.08 cm3) were significantly lower than those at baseline (12.80 ± 0.09 cm3). With regard to the impact of aging, all resin materials showed a statistically significant increase in volume after 5000 cycles (13.04 ± 0.22 cm3). There was no statistical difference between volumes measured at the other cycle steps. The elastic modulus ranged from 22.15 to 10.06 GPa and the Poisson ratio from 0.54 to 0.22 with a significant difference between the evaluated materials (α = 0.05). The degree of conversion was higher than 60% for all evaluated resin composites.


2021 ◽  
Author(s):  
Jialiang Hu ◽  
Pradeep Menon ◽  
Amna Al Yaqoubi ◽  
Mohamed Al Shehhi ◽  
Mahmoud Basioni ◽  
...  

Abstract High gas flow rates in deep-buried dolomitized reservoir from an offshore field Abu Dhabi cannot be explained by the low matrix permeability. Previous permeability multiplier based on distance to major faults is not a solid geological solution due to over-simplifying reservoir geomechanics, overlooking folding-related fractures, and lack of detailed fault interpretation from poor seismic. Alternatively, to characterize the heterogeneous flow related with natural fractures in this undeveloped reservoir, fracture network is modelled based on core, bore hole imager (BHI), conventional logs, seismic data and test information. Limited by investigation scale, vertical wells record apparent BHI, and raw fracture interpretation cannot represent true 3D percolation reflected on PLT. To overcome this shortfall, correction based on geomechanics and mechanical layer (ML) analysis is performed. Young's modulus (E), Poisson ratio (ν), and brittleness index are calculated from logs, describing reservoir tendency of fracturing. Other than defining MLs, bedding plane intensity from BHI is also used as an indicator of fracture occurrence, since stress tends to release at strata discontinuity and forms bed-bounded fractures observed from cores. Subsequently, a new fracture intensity is generated from combined geomechanics properties and statistics average of BHI-derived fracture occurrence within the ML frame, which improves match with PLT and distinguishes fracture enhance flow intervals consistently in all wells. Seismic discontinuity attributes are used as static fracture footprints to distribute fractures from wells to 3D. The final hybrid DFN comprises large-scale deterministic zone-crossing fractures and small-scale stochastic bed-bounded fractures. Sub-vertical open fractures are dominated by NE-SW wrenching fractures related with Zagros compression and reactive salt upward movement. There is no angle rotation of fractures in different fault blocks. Open fractures in other strikes are supported by partial cements and mismatching fracture walls on computerized tomography (CT) images. ML correlation shows vertical consistence across stratigraphic framework and its intensity indicates fracture potential of vertical zones reflected by tests. Fracture-enhanced flow units are further constrained by a threshold in both combined geomechanics properties and statistics average of raw BHI fracture intensity in ML frame. As a result, final fracture network maps reservoir brittleness and flow potential both vertically and laterally, identifying fracture regions along folding axis not just major faults, evidenced by wells and seismic. According to the upscaling results, the case study reveals a type-III fractured reservoir, where fractures contribute to flow not to volume. Fracture network enhances bed-wise horizontal communication but also opens vertical feeding channels. Fracture permeability is mainly influenced by aperture and intensity, while aspect ratio, fracture length, and proportion of strikes and dips mainly influence permeability distribution rather than absolute values. This study provides a production-oriented characterization workflow of natural fracture heterogeneity based on correction of raw BHI in undeveloped fields.


2021 ◽  
Vol 18 (6) ◽  
pp. 970-983
Author(s):  
Jing Ba ◽  
Peng Hu ◽  
Wenhui Tan ◽  
Tobias M Müller ◽  
Li-Yun Fu

Abstract The reservoir rocks from Chang-7 member of Yanchang Formation of Ordos Basin are characterised with heterogeneous fabric structures at the pore scale, and low porosity/permeability is exhibited at the macro scale. Precise prediction of reservoir brittleness is of great significance to oil production. Ultrasonic experiments are performed on tight sandstones collected from the target formation. A rock-physics model (RPM) is presented based on the Voigt–Reuss–Hill average (VRH), self-consistent approximation (SCA) and differential effective medium (DEM) theory. The brittleness characteristics relying on mineral composition, porosity and microcrack properties are explored by using the RPM. The Young's modulus increases and Poisson ratio decreases with increasing quartz content. Based on experimental, log and seismic data, brittle mineral analysis of rock physical model is performed at multiple scales. The model accuracy is verified by experimental data and well log data. The brittleness distribution is predicted on the basis of log and seismic data, which can be instructive for the reservoir rock fracturing in actual engineering operations.


Sign in / Sign up

Export Citation Format

Share Document