Genetic analysis of, and selection for, factors affecting quantitative resistance to Xanthomonas campestris pv. oryzae in rice

Euphytica ◽  
1991 ◽  
Vol 53 (3) ◽  
pp. 235-245 ◽  
Author(s):  
M. F. Koch ◽  
J. E. Parlevliet
1990 ◽  
Vol 41 (6) ◽  
pp. 1093 ◽  
Author(s):  
JL Wheeler ◽  
C Mulcahy ◽  
JJ Walcott ◽  
GG Rapp

The effect of seven factors, namely genotype, plant maturity, nitrogen fertilizer, phosphorus fertilizer, water stress, light intensity and temperature, on the hydrogen cyanide potential (HCNp) of forage sorghum was studied in three pot experiments. Fivefold differences occurred between genotypes in HCNp, with a breeder's line, X45106, selected for low HCNp having a maximum of 520 mg HCN kg-1 DM (dry matter) compared with 2300 and 2450 mg kg-1 DM for cvs Zulu and Silk respectively. In X45 106, HCNp (mg HCN kg-1 DM) declined curvilinearly with age d (days from sowing) (HCNp=8460- 320d+ 3.1d2) and linearly in Silk (HCNp = 9020 - 110d), but the decline in Zulu was not statistically significant. Nitrogen (equivalent to 200 kg ha-1 of N) increased HCN, (P< 0.001), but more so in full light (100 mg kg-1 compared with 1430 mg kg-1) than in 50% shade (190 mg kg-1 compared with 690 mg kg-1). In one experiment, acute water stress appeared to reduce HCNp, but this was confounded with the strong decline due to aging. In another study, acute water stress had no effect on HCNp. Neither the application of superphosphate nor change in light intensity, nor change in temperature had a direct significant effect on HCNp in these studies. Breeding and selection for low HCNp appears a promising approach to ensuring that sorghum plants will provide non-toxic forage from an early stage of growth.


1966 ◽  
Vol 17 (4) ◽  
pp. 557 ◽  
Author(s):  
GH Brown ◽  
HN Turner ◽  
SSY Young ◽  
CHS Dolling

Estimates were made of the effects of the following factors on 10 fleece and body characteristics measured on breeding ewes aged 1½ to 10½ years in three mating groups over a period of 15 years: age of ewe, single or twin birth, age of dam, the ewe's own lambing performance, the year in which measurements were made, and the year in which each set of ewes was born. Two groups (S and MS) were under selection for high clean wool weight at 15–16 months, with a ceiling on wrinkle score and fibre diameter, while the third (C) was a random control. Changes with age were present in all characteristics and were similar in the three groups. The finding that selection on wool weight at an early age had no effect on subsequent age changes in any characteristic is of considerable importance. Greasy and clean wool weight reached a maximum at 34 years, then declined by 0.3–0.2 1b per year. Percentage clean yield, fibre diameter, body weight, and wrinkle score had maxima at 5½ to 6½ years. Staple length fell consistently by approximately 0.2 cm per year, while face cover rose consistently but slightly. Crimp number rose, fell, and rose again, while fibre number rose, fell, and remained constant from 4½ years. The chief source of increase in wool weight from l½ to 3½ years was an increase in the total number of fibres. The chief source of the subsequent fall was a decrease in fibre volume, with a minor contribution from a fall in total fibre number after 6½ years. Twin-born ewes cut 0.21 lb (4.2% of the mean) less clean wool per year over their lifetime than single-born ewes, while the progeny of 2-year-old ewes cut 0.32 lb (6.4%) less than the progeny of adults. The main source of lower weight in each case was a lower total fibre number. Pregnancy lowered clean wool weight more than lactation, the separate effects being 0.87 and 0.38 lb respectively (17.4 and 7.7% of the mean) and the combined effect 1.25 1b or 25.1%. Pregnancy lowered total fibre number but lactation had no further effect. Mean clean wool weights over all ages in the C group varied from year to year, the range being from 1.08 lb (21.6%)below the mean to 0.97 lb (19.4%) above. Differences in total fibre number contributed between one-third and two-thirds of the variation. Ewes born in consecutive years in the S and MS groups showed marked upward trends in clean wool weight, fibre number, and staple length, with a marked downward trend in crimp number and a slight upward trend in body weight. These trends demonstrate direct and correlated responses to the strong selection for high clean wool weight at 15–16 months of age, and the associated slight selection against fibre diameter and wrinkle score. The mean annual increases in clean wool weight were 0.15 and 0.11 Ib (3.0 and 2.2%) in the S and MS groups, approximately 40% of the increase arising from increased total fibre number and 40% from increased staple length. The effects of age and lambing performance can be used to predict productivity in flocks of differing age structures. As the casting age rises to 54 years changes in productivity are negligible. With a rise in casting age to 7½ years the average clean wool weight of the flock would fall by 0.14 lb, with a slight decrease in staple length and crimp number. These changes need to be balanced against any increased lambing percentage or decreased annual genetic gain due to increased generation interval. Comparison with other available figures indicates that age changes may vary from one area to another.


2005 ◽  
Vol 9 (5) ◽  
pp. 553-560 ◽  
Author(s):  
Debra Zeroski ◽  
Laurie Abel ◽  
Wayne M. Butler ◽  
Kent Wallner ◽  
Gregory S. Merrick

1997 ◽  
Vol 48 (2) ◽  
pp. 215 ◽  
Author(s):  
W. R. Lawson ◽  
I. D. Godwin ◽  
M. Cooper ◽  
P. S. Brennan

Three recombinant inbred populations were assessed for tolerance to preharvest sprouting (PHS). Genetic analysis of the PHS scores, as assessed under artificial rain treatment, indicated that for 2 of the populations, tolerance to sprouting was simply inherited and was controlled by 2 independent genes, both of which are necessary for full tolerance. The data presented here show that in these 2 populations the trait is highly heritable under controlled environment situations. It was also demonstrated that the red seed colour gene, derived from Aus1490 and traditionally associated with tolerance, is not necessary for full tolerance to sprouting, although indirect selection for preharvest sprouting tolerance can be performed very effectively by selecting for red grain. The presence of white-seeded lines, recovered from this cross with a red-seeded donor of PHS tolerance, that are at least as tolerant as the most tolerant red-seeded individuals demonstrates that red-seeded donors of PHS tolerance should not be discarded for improvement of this trait.


2020 ◽  
pp. 472-502
Author(s):  
Stefan Dennenmoser ◽  
John H. Christy ◽  
Martin Thiel

Reproductive rhythms can be found in numerous crustacean species. This chapter reviews the temporal scales of rhythms and how these rhythms are entrained and maintained by external cues and endogenous clocks. The occurrence and synchrony of rhythms vary along latitudinal and depth gradients, which may depend on the availability of zeitgebers (e.g., temperature and photoperiod), changing selective pressures such as predation risk, and variability in larval development rates that affect the timing and synchrony of reproductive rhythms. Commonly observed rhythms are reproductive migrations and synchronized larval release, which are often timed to reduce predation risk for newly hatched larvae. In crustaceans, reproductive rhythms rarely evolve under pure density-dependent selection for synchrony. Pure density dependence is common in marine broadcast-spawning invertebrates like corals, which rely on accumulation of gametes in time and space to ensure fertilization. Instead, (density-independent) selection for synchrony with environmental cycles that track changes in factors affecting fitness such as energy expenditure, predation risk, or food availability seems to be the rule, although some exceptions may exist. In contrast to natural selection, the possible contribution of sexual selection on reproductive rhythms has rarely been considered. Selection for enhanced mating possibilities should favor reproductive synchrony, but deviations from synchrony will affect the operational sex ratio and influence sexual selection. Finally, the chapter discusses the possibility of sexual conflict over reproductive timing between males and females and explores circumstances under which synchronous reproductive rhythms might be abandoned.


Sign in / Sign up

Export Citation Format

Share Document