preharvest sprouting
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 31)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Thobeka Philile Khumalo ◽  
Tsepiso Hlongoane ◽  
Annelie Barnard ◽  
Toi John Tsilo

The current and projected climate change that is represented by increasing temperatures, humidity levels and irregular rainfall patterns, promotes the occurrence of preharvest sprouting (PHS) in wheat. PHS results in significant economic losses, globally, which necessitates the need for high-yielding cultivars with increased PHS tolerance, hence this study was conducted. The current study evaluated two doubled-haploid (DH) wheat populations of Tugela-Dn × Elands and Elands × Flamink across six environments in the Free State Province of South Africa to select genotypes with increased PHS tolerance and further map the underlying loci. Significant effects of DH lines (194) and environments (6) were observed for PHS tolerance. The results of this study validate previous findings that PHS is only expressed when environmental conditions are conducive. Quantitative trait loci (QTL) mapping using single nucleotide polymorphism (SNP) and silicoDArT markers revealed three additive QTL with major effects on chromosomes 5B and 7B, and these QTL were detected more than once, when conditions were favourable. These QTL explained a phenotypic variation (PVE) varying between 10.08% and 20.30% (LOD = 2.73 – 3.11). About 16.50% of DH lines performed to the level of Elands (the PHS-tolerant parent) and are recommended for further selection in a pre-breeding or breeding programme. The findings of the study are expected to facilitate the on-going breeding efforts for PHS tolerance in winter wheat.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2485
Author(s):  
Václav Dvořáček ◽  
Michal Jágr ◽  
Anna Kotrbová Kozak ◽  
Ivana Capouchová ◽  
Petr Konvalina ◽  
...  

Our study was focused on the evaluation of the content of a wider spectrum of eight avenanthramides (AVNs) as unique components of oat grain under the effects of four selected factors (cultivar, locality, cropping system, and year). The weather effects on changes in the AVN content and their relationship to other important parameters of oat grain were further evaluated in more detail. A sensitive UHPLC system coupled with a QExactive Orbitrap mass spectrometer was used for AVN quantification. AVNs confirmed a high variability (RDS = 72.7–113.5%), which was dominantly influenced by the locality and year factors. While most AVN types confirmed mutually high correlations (r = 0.7–0.9), their correlations with the other 10 grain parameters were lower (r ≤ 0.48). Their significant correlations (0.27–0.46) with β-D-glucan could be used in perspective in breeding programs for the synergetic increase of both parameters. PCA analysis and Spearman correlations based on individual cultivars confirmed a significant effect of June and July precipitation on the increase of Σ AVNs. However, the results also indicated that higher precipitation can generate favorable conditions for related factors, such as preharvest sprouting evoking a direct increase of AVNs synthesis in oat grain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lingli Li ◽  
Yingjun Zhang ◽  
Yong Zhang ◽  
Ming Li ◽  
Dengan Xu ◽  
...  

Preharvest sprouting (PHS) significantly reduces grain yield and quality. Identification of genetic loci for PHS resistance will facilitate breeding sprouting-resistant wheat cultivars. In this study, we constructed a genetic map comprising 1,702 non-redundant markers in a recombinant inbred line (RIL) population derived from cross Yangxiaomai/Zhongyou9507 using the wheat 15K single-nucleotide polymorphism (SNP) assay. Four quantitative trait loci (QTL) for germination index (GI), a major indicator of PHS, were identified, explaining 4.6–18.5% of the phenotypic variances. Resistance alleles of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-7BL were from Yangxiaomai, and Zhongyou9507 contributed a resistance allele in Qphs.caas-4AL. No epistatic effects were detected among the QTL, and combined resistance alleles significantly increased PHS resistance. Sequencing and linkage mapping showed that Qphs.caas-3AL and Qphs.caas-3DL corresponded to grain color genes Tamyb10-A and Tamyb10-D, respectively, whereas Qphs.caas-4AL and Qphs.caas-7BL were probably new QTL for PHS. We further developed cost-effective, high-throughput kompetitive allele-specific PCR (KASP) markers tightly linked to Qphs.caas-4AL and Qphs.caas-7BL and validated their association with GI in a test panel of cultivars. The resistance alleles at the Qphs.caas-4AL and Qphs.caas-7BL loci were present in 72.2 and 16.5% cultivars, respectively, suggesting that the former might be subjected to positive selection in wheat breeding. The findings provide not only genetic resources for PHS resistance but also breeding tools for marker-assisted selection.


Crop Science ◽  
2021 ◽  
Author(s):  
Daniel W. Sweeney ◽  
Travis E. Rooney ◽  
Jason G. Walling ◽  
Mark E. Sorrells

2021 ◽  
Author(s):  
Tatsuro Suzuki ◽  
Yurie Sekiguchi ◽  
Takahiro Hara ◽  
Kenjiro Katsu ◽  
Asana Matsuura

2021 ◽  
Vol 264 ◽  
pp. 108087
Author(s):  
HyeonSeok Lee ◽  
MyoungGoo Choi ◽  
WoonHa Hwang ◽  
JaeHyeok Jeong ◽  
SeoYeong Yang ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3562
Author(s):  
Yong Jin Lee ◽  
Sang Yong Park ◽  
Dae Yeon Kim ◽  
Jae Yoon Kim

Preharvest sprouting (PHS) is a key global issue in production and end-use quality of cereals, particularly in regions where the rainfall season overlaps the harvest. To investigate transcriptomic changes in genes affected by PHS-induction and ABA-treatment, RNA-seq analysis was performed in two wheat cultivars that differ in PHS tolerance. A total of 123 unigenes related to hormone metabolism and signaling for abscisic acid (ABA), gibberellic acid (GA), indole-3-acetic acid (IAA), and cytokinin were identified and 1862 of differentially expressed genes were identified and divided into 8 groups by transcriptomic analysis. DEG analysis showed the majority of genes were categorized in sugar related processes, which interact with ABA signaling in PHS tolerant cultivar under PHS-induction. Thus, genes related to ABA are key regulators of dormancy and germination. Our results give insight into global changes in expression of plant hormone related genes in response to PHS.


2021 ◽  
pp. 1-10
Author(s):  
Chang Liu ◽  
Rehana S. Parveen ◽  
Samuel R. Revolinski ◽  
Kimberly A. Garland Campbell ◽  
Michael O. Pumphrey ◽  
...  

Abstract Genetic susceptibility to late maturity alpha-amylase (LMA) in wheat (Triticum aestivum L.) results in increased alpha-amylase activity in mature grain when cool conditions occur during late grain maturation. Farmers are forced to sell wheat grain with elevated alpha-amylase at a discount because it has an increased risk of poor end-product quality. This problem can result from either LMA or preharvest sprouting, grain germination on the mother plant when rain occurs before harvest. Whereas preharvest sprouting is a well-understood problem, little is known about the risk LMA poses to North American wheat crops. To examine this, LMA susceptibility was characterized in a panel of 251 North American hard spring wheat lines, representing ten geographical areas. It appears that there is substantial LMA susceptibility in North American wheat since only 27% of the lines showed reproducible LMA resistance following cold-induction experiments. A preliminary genome-wide association study detected six significant marker-trait associations. LMA in North American wheat may result from genetic mechanisms similar to those previously observed in Australian and International Maize and Wheat Improvement Center (CIMMYT) germplasm since two of the detected QTLs, QLMA.wsu.7B and QLMA.wsu.6B, co-localized with previously reported loci. The Reduced height (Rht) loci also influenced LMA. Elevated alpha-amylase levels were significantly associated with the presence of both wild-type and tall height, rht-B1a and rht-D1a, loci in both cold-treated and untreated samples.


Sign in / Sign up

Export Citation Format

Share Document