Cobalt chloride induced stimulation of Photosystem II electron transport in Synechocystis sp. PCC 6803 cells

1993 ◽  
Vol 38 (3) ◽  
pp. 463-469 ◽  
Author(s):  
Swati Tiwari ◽  
Prasanna Mohanty
1991 ◽  
Vol 266 (17) ◽  
pp. 11111-11115
Author(s):  
M. Ikeuchi ◽  
B. Eggers ◽  
G.Z. Shen ◽  
A. Webber ◽  
J.J. Yu ◽  
...  

1998 ◽  
Vol 53 (9-10) ◽  
pp. 849-856
Author(s):  
Sujata R. Mishra ◽  
Surendra Chandra Sabat

Stimulatory effect of divalent cations like calcium (Ca2+) and magnesium (Mg2+) was investigated on electron transport activity of divalent cation deficient low-salt suspended (LS) thylakoid preparation from a submerged aquatic angiosperm, Hydrilla verticillata. Both the cations stimulated electron transport activity of LS-suspended thylakoids having an intact water oxidation complex. But in hydroxylamine (NH2OH) - or alkaline Tris - washed thylakoid preparations (with the water oxidation enzyme impaired), only Ca2+ dependent stimulation of electron transport activity was found. The apparent Km of Ca2+ dependent stimulation of electron flow from H2O (endogenous) or from artificial electron donor (exogenous) to dichlorophenol indophenol (acceptor) was found to be identical. Calcium supported stimulation of electron transport activity in NH2OH - or Tris - washed thylakoids was electron donor selective, i.e., Ca2+ ion was only effective in electron flow with diphenylcarbazide but not with NH2OH as electron donor to photosystem II. A magnesium effect was observed in thylakoids having an intact water oxidation complex and the ion became unacceptable in NH2OH - or Tris - washed thylakoids. Indirect experimental evidences have been presented to suggest that Mg2+ interacts with the water oxidation complex, while the Ca2+ interaction is localized betw een Yz and reaction center of photosystem II.


2021 ◽  
Vol 1862 (12) ◽  
pp. 148494
Author(s):  
Elena A. Protasova ◽  
Taras K. Antal ◽  
Dmitry V. Zlenko ◽  
Irina V. Elanskaya ◽  
Evgeny P. Lukashev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document