absorption cross section
Recently Published Documents


TOTAL DOCUMENTS

872
(FIVE YEARS 111)

H-INDEX

58
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Hamed Sattari Vayghan ◽  
Wojciech J Nawrocki ◽  
Christo Schiphorst ◽  
Dimitri Tolleter ◽  
Hu Chen ◽  
...  

Light absorbed by chlorophylls of photosystem II and I drives oxygenic photosynthesis. Light-harvesting complexes increase the absorption cross-section of these photosystems. Furthermore, these complexes play a central role in photoprotection by dissipating the excess of absorbed light energy in an inducible and regulated fashion. In higher plants, the main light-harvesting complex is the trimeric LHCII. In this work, we used CRISPR/Cas9 to knockout the five genes encoding LHCB1, which is the major component of the trimeric LHCII. In absence of LHCB1 the accumulation of the other LHCII isoforms was only slightly increased, thereby resulting in chlorophyll loss leading to a pale green phenotype and growth delay. Photosystem II absorption cross-section was smaller while photosystem I absorption cross-section was unaffected. This altered the chlorophyll repartition between the two photosystems, favoring photosystem I excitation. The equilibrium of the photosynthetic electron transport was partially maintained by a lower photosystem I over photosystem II reaction center ratio and by the dephosphorylation of LHCII and photosystem II. Loss of LHCB1 altered the thylakoid structure, with less membrane layers per grana stack and reduced grana width. Stable LHCB1 knock out lines allow characterizing the role of this protein in light harvesting and acclimation and pave the way for future in vivo mutational analyses of LHCII.


2021 ◽  
Vol 1862 (12) ◽  
pp. 148494
Author(s):  
Elena A. Protasova ◽  
Taras K. Antal ◽  
Dmitry V. Zlenko ◽  
Irina V. Elanskaya ◽  
Evgeny P. Lukashev ◽  
...  

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Sérgio V. M. C. B. Xavier ◽  
Carolina L. Benone ◽  
Luís C. B. Crispino

AbstractWe investigate the absorption of planar massless scalar waves by a charged rotating stringy black hole, namely a Kerr–Sen black hole. We compute numerically the absorption cross section and compare our results with those of the Kerr–Newman black hole, a classical general relativity solution. In order to better compare both charged black holes, we define the ratio of the black hole charge to the extreme charge as Q. We conclude that Kerr–Sen and Kerr–Newman black holes have a similar absorption cross section, with the difference increasing for higher values of Q.


2021 ◽  
Vol 923 (1) ◽  
pp. L3
Author(s):  
Takumi Nagasawa ◽  
Reo Sato ◽  
Takeshi Hasegawa ◽  
Naoki Numadate ◽  
Nobutaka Shioya ◽  
...  

Abstract The absolute absorption cross section of dangling OH bonds in water ice, a free OH stretch mode by three-coordinated surface water molecules, is derived experimentally as 1.0 ± 0.2 × 10−18 cm2 at 3696 cm−1 for amorphous water at 90 K using infrared multiple-angle incidence resolution spectrometry (IR–MAIRS). The integrated absorption cross section (band strength) of the dangling OH bond at 90 K (1.4 ± 0.3 × 10−17 cm molecule−1 at 3710–3680 cm−1) is found to be more than 1 order of magnitude smaller than those in bulk ice or liquid water. This indicates that a lack of hydrogen-bonding significantly decreases the band strength of dangling OH bonds. The present study also provides average molecular orientations of dangling OH bonds at 10 K and 90 K, because both the surface-parallel (in-plane) and surface-perpendicular (out-of-plane) vibration spectra of dangling OH bonds are quantitatively measured by IR–MAIRS. The intensity ratio of the dangling-OH peaks between in-plane to out-of-plane spectra shows the isotropic nature (random orientation) of the two- and three-coordinated dangling OH bonds in microporous amorphous water prepared at 10 K; however, the three-coordinated dangling OH bonds in nonporous amorphous water prepared at 90 K are dominantly located at the top ice surface and oriented perpendicular to it. These findings provide fundamental insights into the relationship between the structure and optical properties of ice surfaces, and aid quantitative understanding of the surface structure of interstellar ices and their laboratory analogs.


2021 ◽  
Author(s):  
◽  
Alexander J. Barker

<p>Organic photovoltaics (OPVs) show considerable promise as a source of low cost solar energy. Improving our understanding of the processes governing free charge photogeneration in OPVs may unlock the improvements in efficiency required for their widespread implementation. In particular, how do photogenerated charge pairs overcome their mutual columbic attraction, and what governs the branching between bound and free charge pairs that is observed to occur shortly after their creation?  Ultrafast laser techniques such as transient absorption (TA) spectroscopy are the only tools capable of probing the time scales associated with these processes (as short as 10⁻¹⁴ seconds). Challenges include achieving sufficient sensitivity to resolve the tiny signals generated in thin films under solar-equivalent excitation densities, and distinguishing and quantifying overlapping signals due to separate phenomena.  We present the development of a versatile and ultra-sensitive broadband TA spectrometer, along with a comprehensive analysis of the noise sources limiting sensitivity. Through the use of referenced shot-to-shot detection and a novel method exploiting highly chirped broadband probe pulses, we are capable of resolving changes in differential transmission < 3 × 10⁻⁶ over pump-probe delays of 10⁻¹³–10⁻⁴ seconds.  By comparing the absorption due to photogenerated charges to measurements of open-circuit voltage decay in devices under transient excitation, we show that TA is able to quantify the recombination of freely extractable charge pairs over many decades of pump-probe delay. The dependence of this recombination on excitation density can reveal the relative fraction of bound and free charge pairs. We apply this technique to blends of varying efficiency and find that the measured free charge fraction is correlated with published photocharge yields for these materials.  We access a regime at low temperature where thermalized charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The dependence of tunneling rate on distance enabled us to fit recombination dynamics to distributions of recombination rates. We identified populations of charge-transfer states and well-separated charge pairs, the yield of which is strongly correlated with the yield of free charges measured via their intensity dependent recombination. We conclude that populations of free charges are established via long-range charge separation within the thermalization timescale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we find critical charge separation distances of ~ 3–4nm in all materials.  TA spectroscopy probes the absorption of excited states, with the signal being proportional to the product of population density and absorption cross-section of the absorbing species. We show that the dependence of signal on probe pulse intensity can decouple these parameters, and apply a numerical model to determine the time-dependent absorption cross-section of photogenerated excitons in thin films of semiconducting polymers.  Collectively, this thesis presents spectroscopic tools and applications thereof that illuminate the process of free charge generation in organic photovoltaics.</p>


2021 ◽  
Author(s):  
◽  
Alexander J. Barker

<p>Organic photovoltaics (OPVs) show considerable promise as a source of low cost solar energy. Improving our understanding of the processes governing free charge photogeneration in OPVs may unlock the improvements in efficiency required for their widespread implementation. In particular, how do photogenerated charge pairs overcome their mutual columbic attraction, and what governs the branching between bound and free charge pairs that is observed to occur shortly after their creation?  Ultrafast laser techniques such as transient absorption (TA) spectroscopy are the only tools capable of probing the time scales associated with these processes (as short as 10⁻¹⁴ seconds). Challenges include achieving sufficient sensitivity to resolve the tiny signals generated in thin films under solar-equivalent excitation densities, and distinguishing and quantifying overlapping signals due to separate phenomena.  We present the development of a versatile and ultra-sensitive broadband TA spectrometer, along with a comprehensive analysis of the noise sources limiting sensitivity. Through the use of referenced shot-to-shot detection and a novel method exploiting highly chirped broadband probe pulses, we are capable of resolving changes in differential transmission < 3 × 10⁻⁶ over pump-probe delays of 10⁻¹³–10⁻⁴ seconds.  By comparing the absorption due to photogenerated charges to measurements of open-circuit voltage decay in devices under transient excitation, we show that TA is able to quantify the recombination of freely extractable charge pairs over many decades of pump-probe delay. The dependence of this recombination on excitation density can reveal the relative fraction of bound and free charge pairs. We apply this technique to blends of varying efficiency and find that the measured free charge fraction is correlated with published photocharge yields for these materials.  We access a regime at low temperature where thermalized charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The dependence of tunneling rate on distance enabled us to fit recombination dynamics to distributions of recombination rates. We identified populations of charge-transfer states and well-separated charge pairs, the yield of which is strongly correlated with the yield of free charges measured via their intensity dependent recombination. We conclude that populations of free charges are established via long-range charge separation within the thermalization timescale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we find critical charge separation distances of ~ 3–4nm in all materials.  TA spectroscopy probes the absorption of excited states, with the signal being proportional to the product of population density and absorption cross-section of the absorbing species. We show that the dependence of signal on probe pulse intensity can decouple these parameters, and apply a numerical model to determine the time-dependent absorption cross-section of photogenerated excitons in thin films of semiconducting polymers.  Collectively, this thesis presents spectroscopic tools and applications thereof that illuminate the process of free charge generation in organic photovoltaics.</p>


Nano Express ◽  
2021 ◽  
Author(s):  
Nilesh Kumar Pathak ◽  
Partha Sarathi

Abstract In the present study, the heat generation in gold nanodimers when irradiated at their localized surface plasmon resonances is investigated numerically. The theoretical calculations are performed employing the first principal approach to obtain the absorption cross-section of gold nanodimer for different parameter ranges. The heating mechanism is enumerated in terms of its temperature by solving the steady-state heat transfer equation which depends on the absorption cross-section and surface plasmon resonance wavelength. These surface plasmon resonances are quite sensitive to the distance between the dimer and have been tuned from visible to IR range by managing the distance between spheres from 0 to 6nm. The computation of normalized electric field distribution of gold nanodimer under the plasmon resonance has been mapped using boundary element method(BEM) which enables visualization of the local hot spot that plays a significant role in optical heating applications. The work furnishes the basic understanding of the heating mechanism of gold nanodimer which can find application as plasmonic nanoheaters in several branches of science in visible and near-infrared regions of the electromagnetic spectrum.


2021 ◽  
Author(s):  
Alexander Bieber ◽  
Zachary VanOrman ◽  
Hayley Drozdick ◽  
Rachel Weiss ◽  
Sarah Wieghold ◽  
...  

Photon upconversion, particularly via triplet-triplet annihilation (TTA), could prove beneficial in expanding the efficiencies and overall impacts of optoelectronic devices across a multitude of technologies. The recent development of bulk metal halide perovskites as triplet sensitizers is one potential step toward the industrialization of upconversion-enabled devices. Here, we investigate the impact of varying additions of bromide into a lead iodide perovskite thin film on the TTA upconversion process in the annihilator molecule rubrene. We find an interplay between the bromide content and the overall device efficiency. In particular, a higher bromide content results in higher internal upconversion efficiencies, enabled by more efficient charge extraction at the interface, likely due to a more favorable band alignment. However, the external upconversion efficiency decreases, as the absorption cross section in the near infrared is reduced. The highest upconversion performance is found in our study for a bromide content of 5%. This result can be traced back to a high absorption cross section in the near infrared and higher photoluminescence quantum yield in comparison to the iodide-only perovskite, as well as an increased driving force for charge transfer.


Sign in / Sign up

Export Citation Format

Share Document