Planetary boundary layer and surface layer sensitivity to land surface parameters

1996 ◽  
Vol 77 (3-4) ◽  
pp. 353-378 ◽  
Author(s):  
Wen-Yih Sun ◽  
Michael G. Bosilovich
2002 ◽  
Vol 46 ◽  
pp. 91-96 ◽  
Author(s):  
Ryo MORIWAKI ◽  
Manabu KANDA ◽  
Tomoki WATANABE ◽  
Kazuaki MATSUNAGA

2001 ◽  
Author(s):  
Lionel Jarlan ◽  
Pierre Mazzega ◽  
Eric Mougin ◽  
Pierre L. Frison

2003 ◽  
Vol 3 (1) ◽  
pp. 797-825 ◽  
Author(s):  
O. Couach ◽  
I Balin ◽  
R. Jiménez ◽  
P. Ristori ◽  
S. Perego ◽  
...  

Abstract. This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m a.s.l.). The combined lidar observations and model calculations are in good agreement with atmospheric measurements obtained with an instrumented aircraft (METAIR). Ozone fluxes were calculated using lidar measurements of ozone vertical profiles concentrations and the horizontal wind speeds measured with a Radar Doppler wind profiler (DEGREANE). The ozone flux patterns indicate that the diurnal cycle of ozone production is controlled by local thermal winds. The convective PBL maximum height was some 2700 m above the land surface while the nighttime residual ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the magnitude of the ozone processes at different altitudes in order to estimate the photochemical ozone production due to the primary pollutants emissions of Grenoble city and the regional network of automobile traffic.


2001 ◽  
Vol 25 (4) ◽  
pp. 483-511 ◽  
Author(s):  
Gareth Roberts

This paper presents a review of the application of Bi-directional Reflectance Distribution Function (BRDF) models in the inference of land surface parameters at regional and global scales using remotely sensed data. Information on land surface parameters, such as Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), aerodynamic surface roughness and albedo, are valuable for understanding the transfer of energy and mass between terrestrial ecosystems and the atmosphere (e.g., carbon, nitrogen and methane cycling) and for ingestion into the lower boundary condition of global circulation models (GCM)s. Conventional techniques for acquiring information on land surface parameters do not account for or utilize the directional nature of surface reflectance. This paper reviews empirical, semi-empirical and, to a lesser extent, physical BRDF models that describe the surface BRDF. In each case examples are given of their application in inferring land surface parameters. The review concludes by discussing the future prospects of BRDF modelling using spaceborne sensors.


Sign in / Sign up

Export Citation Format

Share Document