Momentum flux invariance and solar wind sources

Solar Physics ◽  
1983 ◽  
Vol 83 (2) ◽  
pp. 379-384 ◽  
Author(s):  
Raphael Steinitz
1987 ◽  
Vol 14 (10) ◽  
pp. 991-994 ◽  
Author(s):  
C. T. Russell ◽  
J. G. Luhmann ◽  
D. N. Baker

1983 ◽  
Vol 271 ◽  
pp. 335 ◽  
Author(s):  
V. Pizzo ◽  
R. Schwenn ◽  
E. Marsch ◽  
H. Rosenbauer ◽  
K.-H. Muehlhaeuser ◽  
...  

2008 ◽  
Vol 15 (3) ◽  
pp. 445-455 ◽  
Author(s):  
S. C. Chapman ◽  
B. Hnat ◽  
K. Kiyani

Abstract. In this review we collate recent results for the statistical scaling properties of fluctuations in the solar wind with a view to synthesizing two descriptions: that of evolving MHD turbulence and that of a scaling signature of coronal origin that passively propagates with the solar wind. The scenario that emerges is that of coexistent signatures which map onto the well known "two component" picture of solar wind magnetic fluctuations. This highlights the need to consider quantities which track Alfvénic fluctuations, and energy and momentum flux densities to obtain a complete description of solar wind fluctuations.


1994 ◽  
Vol 14 (4) ◽  
pp. 135-138 ◽  
Author(s):  
P. Hick ◽  
B.V. Jackson
Keyword(s):  

2021 ◽  
Author(s):  
Daniel Verscharen ◽  
David Stansby ◽  
Adam Finley ◽  
Christopher Owen ◽  
Timothy Horbury ◽  
...  

<p>The Solar Orbiter mission is currently in its cruise phase, during which the spacecraft's in-situ instrumentation measures the solar wind and the electromagnetic fields at different heliocentric distances. </p><p>We evaluate the solar wind angular-momentum flux by combining proton data from the Solar Wind Analyser (SWA) Proton-Alpha Sensor (PAS) and magnetic-field data from the Magnetometer (MAG) instruments on board Solar Orbiter during its first orbit. This allows us to evaluate the angular momentum in the protons in addition to that stored in magnetic-field stresses, and compare these to previous observations from other spacecraft. We discuss the statistical properties of the angular-momentum flux and its dependence on solar-wind properties. </p><p>Our results largely agree with previous measurements of the solar wind’s angular-momentum flux in the inner heliosphere and demonstrate the potential for future detailed studies of large-scale properties of the solar wind with the data from Solar Orbiter.</p>


2010 ◽  
Vol 6 (S271) ◽  
pp. 395-396
Author(s):  
R. Pinto ◽  
S. Brun ◽  
L. Jouve ◽  
R. Grappin

AbstractWe study the connections between the sun's convection zone evolution and the dynamics of the solar wind and corona. We input the magnetic fields generated by a 2.5D axisymmetric kinematic dynamo code (STELEM) into a 2.5D axisymmetric coronal MHD code (DIP). The computations were carried out for an 11 year cycle. We show that the solar wind's velocity and mass flux vary in latitude and in time in good agreement with the well known time-latitude assymptotic wind speed diagram. Overall sun's mass loss rate, momentum flux and magnetic breaking torque are maximal near the solar minimum.


1983 ◽  
Vol 272 ◽  
pp. 325 ◽  
Author(s):  
D. J. Mullan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document