Nucleotide divergence of the rp49 gene region between Drosophila melanogaster and two species of the Obscura group of Drosophila

1993 ◽  
Vol 36 (3) ◽  
pp. 243-248 ◽  
Author(s):  
Carmen Segarra ◽  
Montserrat Aguad�
Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 617-624 ◽  
Author(s):  
S M Williams ◽  
J A Kennison ◽  
L G Robbins ◽  
C Strobeck

Abstract The role of reciprocal recombination in the coevolution of the ribosomal RNA gene family on the X and Y chromosomes of Drosophila melanogaster was assessed by determining the frequency and nature of such exchange. In order to detect exchange events within the ribosomal RNA gene family, both flanking markers and restriction fragment length polymorphisms within the tandemly repeated gene family were used. The vast majority of crossovers between flanking markers were within the ribosomal RNA gene region, indicating that this region is a hotspot for heterochromatic recombination. The frequency of crossovers within the ribosomal RNA gene region was approximately 10(-4) in both X/X and X/Y individuals. In conjunction with published X chromosome-specific and Y chromosome-specific sequences and restriction patterns, the data indicate that reciprocal recombination alone cannot be responsible for the observed variation in natural populations.


Genetics ◽  
2007 ◽  
Vol 177 (2) ◽  
pp. 1071-1085 ◽  
Author(s):  
Jeffrey D. Jensen ◽  
Vanessa L. Bauer DuMont ◽  
Adeline B. Ashmore ◽  
Angela Gutierrez ◽  
Charles F. Aquadro

1994 ◽  
Vol 14 (10) ◽  
pp. 6809-6818
Author(s):  
M D Garfinkel ◽  
J Wang ◽  
Y Liang ◽  
A P Mahowald

The Drosophila melanogaster shavenbaby (svb)-ovo gene region is a complex locus, containing two distinct but comutable genetic functions. ovo is required for survival and differentiation of female germ line cells and plays a role in germ line sex determination. In contrast, svb is required in both male and female embryos for the production of epidermal locomotor and sensory structures. Sequences required for the two genetic functions are partially overlapping. ovo corresponds to a previously described germ line-dependent 5.0-kb poly(A)+ mRNA that first appears in the germarium and accumulates in nurse cells during oogenesis. The 5.0-kb mRNA is stored in the egg, but it is rapidly lost in the embryos except for its continued presence in the germ line precursor pole cells. The ovo mRNA predicts a 1,028-amino-acid 110.6-kDa protein homologous with transcription factors. We have identified an embryonic mRNA, 7.1 kb in length, that contains exons partially overlapping those of the 5.0-kb poly(A)+ mRNA. The spatial distribution of this newly discovered transcript during midembryogenesis suggests that it corresponds to the svb function. The arrangement of exons common to the 5.0- and 7.1-kb mRNAs suggests that the Ovo and Svb proteins share DNA-binding specificity conferred by four Cys2-His2 zinc finger motifs but differ functionally in their capacity to interact with other components of the transcription machinery.


2003 ◽  
Vol 12 (5) ◽  
pp. 1277-1285 ◽  
Author(s):  
David D. Duvernell ◽  
Paul S. Schmidt ◽  
Walter F. Eanes

2009 ◽  
Vol 87 (7) ◽  
pp. 635-641 ◽  
Author(s):  
S. Havard ◽  
P. Eslin ◽  
G. Prévost ◽  
G. Doury

Unable to form cellular capsules around large foreign bodies, the species Drosophila subobscura Collin in Gordon, 1936 was previously shown devoid of lamellocytes, the capsule-forming hemocytes in Drosophila melanogaster Meigen, 1830. This unusual case of deficiency in encapsulation ability was remarkable enough to motivate further investigations in phylogenetically related species of the obscura group. Like D. subobscura, the species Drosophila azteca Sturtevant and Dobzhansky, 1936, Drosophila bifasciata Pomini, 1940, Drosophila guanche Monclus, 1976, Drosophila miranda Dobzhansky, 1935, Drosophila persimilis Dobzhansky and Epling, 1944, and Drosophila pseudoobcura Frovola and Astaurov, 1929 were found to be unable to encapsulate large foreign bodies and also to lack lamellocytes. Surprisingly, Drosophila affinis Sturtevant, 1916, Drosophila tolteca Patterson and Mainland, 1944, and Drosophila obscura Fallen, 1823 were capable of mounting cellular capsules, although their encapsulation abilities remained weak. These three species were free of lamellocytes but possessed small pools of never before described “atypical hemocytes” present in the hemolymph when capsules were formed.


Chromosoma ◽  
1995 ◽  
Vol 104 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Carmen Segarra ◽  
Elena R. Lozovskaya ◽  
Griselda Rib� ◽  
Montserrat Aguad� ◽  
Daniel L. Hartl

2021 ◽  
Author(s):  
Janet I Collett ◽  
Stephen R Pearce

Two dimensional graphical dotplotting is adopted to identify sequence elements and their variants in lengths of DNA of up to 10 kb. Named GCAT for identification of precisely defined short sequences and their variants, its use complements the precise matching of many computational programs, including BLAST. Short reiterated search sequences are entered in the Y axis of the dotplot program to be matched at their identical and near identical sites in a sequence of interest entered in the X axis. The result is a barcode like representation of the identified sequence elements along the X axis of the dotplot. Alignments of searches and sequence landmarks provide visualization of composition and juxtapositions. The method is described here by example of characterizations of three distinctive sequences available in the annotated Drosophila melanogaster reference genome (www.flybase.org): the Jonah 99C gene region, the transcript of Dipeptidase B and the transposable element roo. Surprising observations emerging from these explorations include in frame STOP codons in the large exonic intron of Dip-B, high A content of the replicative strand of roo as TE example and similarities of its ORF and the large intron of Dip B.


1994 ◽  
Vol 14 (10) ◽  
pp. 6809-6818 ◽  
Author(s):  
M D Garfinkel ◽  
J Wang ◽  
Y Liang ◽  
A P Mahowald

The Drosophila melanogaster shavenbaby (svb)-ovo gene region is a complex locus, containing two distinct but comutable genetic functions. ovo is required for survival and differentiation of female germ line cells and plays a role in germ line sex determination. In contrast, svb is required in both male and female embryos for the production of epidermal locomotor and sensory structures. Sequences required for the two genetic functions are partially overlapping. ovo corresponds to a previously described germ line-dependent 5.0-kb poly(A)+ mRNA that first appears in the germarium and accumulates in nurse cells during oogenesis. The 5.0-kb mRNA is stored in the egg, but it is rapidly lost in the embryos except for its continued presence in the germ line precursor pole cells. The ovo mRNA predicts a 1,028-amino-acid 110.6-kDa protein homologous with transcription factors. We have identified an embryonic mRNA, 7.1 kb in length, that contains exons partially overlapping those of the 5.0-kb poly(A)+ mRNA. The spatial distribution of this newly discovered transcript during midembryogenesis suggests that it corresponds to the svb function. The arrangement of exons common to the 5.0- and 7.1-kb mRNAs suggests that the Ovo and Svb proteins share DNA-binding specificity conferred by four Cys2-His2 zinc finger motifs but differ functionally in their capacity to interact with other components of the transcription machinery.


Sign in / Sign up

Export Citation Format

Share Document