zinc finger motifs
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 16)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinxin Li ◽  
Mengzhen Han ◽  
Hongwei Zhang ◽  
Furong Liu ◽  
Yonglong Pan ◽  
...  

AbstractZinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Che-Yuan Hsu ◽  
Teruki Yanagi ◽  
Hideyuki Ujiie

Tripartite motif (TRIM) proteins play important roles in a wide range of cell physiological processes, such as signal transduction, transcriptional regulation, innate immunity, and programmed cell death. TRIM29 protein, encoded by the ATDC gene, belongs to the RING-less group of TRIM protein family members. It consists of four zinc finger motifs in a B-box domain and a coiled-coil domain, and makes use of the B-box domain as E3 ubiquitin ligase in place of the RING. TRIM29 was found to be involved in the formation of homodimers and heterodimers in relation to DNA binding; additional studies have also demonstrated its role in carcinogenesis, DNA damage signaling, and the suppression of radiosensitivity. Recently, we reported that TRIM29 interacts with keratins and FAM83H to regulate keratin distribution. Further, in cutaneous SCC, the expression of TRIM29 is silenced by DNA methylation, leading to the loss of TRIM29 and promotion of keratinocyte migration. This paper reviews the role of TRIM family proteins in malignant tumors, especially the role of TRIM29 in cutaneous SCC.


2021 ◽  
Author(s):  
Maarten L Hekkelman ◽  
Ida de de Vries ◽  
Robbie P Joosten ◽  
Anastassis Perrakis

Artificial intelligence (AI) methods for constructing structural models of proteins on the basis of their sequence are having a transformative effect in biomolecular sciences. The AlphaFold protein structure database makes available hundreds of thousands of protein structures. However, all these structures lack cofactors essential for their structural integrity and molecular function (e.g. hemoglobin lacks a bound heme), key ions essential for structural integrity (e.g. zinc-finger motifs) or catalysis (e.g. Ca2+ or Zn2+ in metalloproteases), and ligands that are important for biological function (e.g. kinase structures lack ADP or ATP). Here, we present AlphaFill, an algorithm based on sequence and structure similarity, to "transplant" such "missing" small molecules and ions from experimentally determined structures to predicted protein models. These publicly available structural annotations are mapped to predicted protein models, to help scientists interpret biological function and design experiments.


2021 ◽  
Author(s):  
Han Chiu ◽  
Hsin-Ping Chiu ◽  
Han-Pang Yu ◽  
Li-Hsiung Lin ◽  
Zih-Ping Chen ◽  
...  

Zinc-finger protein 36, CCCH type-like 1 (ZFP36L1), containing tandem CCCH-type zinc-finger motifs with an RNA-binding property, plays an important role in cellular RNA metabolism mainly via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 has potent antiviral activity against influenza A virus infection. However, its role in the host defense response against flaviviruses has not been addressed. Here, we demonstrate that ZFP36L1 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L1 reduced JEV and DENV infection, and ZFP36L1 knockdown enhanced viral replication. ZFP36L1 destabilized the JEV genome by targeting and degrading viral RNA mediated by both 5′-3′ XRN1 and 3′-5′ RNA-exosome RNA decay pathways. Mutation in both zinc-finger motifs of ZFP36L1 disrupted RNA-binding and antiviral activity. Furthermore, the viral RNA sequences specifically recognized by ZFP36L1 were mapped to the 3'-untranslated region of the JEV genome with the AU-rich element (AUUUA) motif. We extend the function of ZFP36L1 to host antiviral defense by directly binding and destabilizing the viral genome via recruiting cellular mRNA decay machineries. Importance Cellular RNA-binding proteins are among the first lines of defense against various viruses, particularly RNA viruses. ZFP36L1 belongs to the CCCH-type zinc-finger protein family and has RNA-binding activity; it has been reported to directly bind to the AU-rich elements (AREs) of a subset of cellular mRNAs and then lead to mRNA decay by recruiting mRNA degrading enzymes. However, the antiviral potential of ZFP36L1 against flaviviruses has not yet been fully demonstrated. Here, we reveal the antiviral potential of human ZFP36L1 against Japanese encephalitis virus (JEV) and dengue virus (DENV). ZFP36L1 specifically targeted the ARE motif within viral RNA and triggered the degradation of viral RNA transcripts via cellular degrading enzymes, 5′-3′ XRN1 and 3′-5′ RNA exosome. These findings provide mechanistic insights into how human ZFP36L1 serves as a host antiviral factor to restrict flavivirus replication.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1922
Author(s):  
Ying Wang ◽  
Chao Guo ◽  
Xing Wang ◽  
Lianmei Xu ◽  
Rui Li ◽  
...  

The nucleocapsid (NC) protein of human immunodeficiency (HIV) is a small, highly basic protein containing two CCHC zinc-finger motifs, which is cleaved from the NC domain of the Gag polyprotein during virus maturation. We previously reported that recombinant HIV-1 Gag and NCp7 overexpressed in an E. coli host contains two and one zinc ions, respectively, and Gag exhibited much higher selectivity for packaging signal (Psi) and affinity for the stem-loop (SL)-3 of Psi than NCp7. In this study, we prepared NCp7 containing 0 (0NCp7), 1 (NCp7) or 2 (2NCp7) zinc ions, and compared their secondary structure, Psi-selectivity and SL3-affinity. Along with the decrease of the zinc content, less ordered conformations were detected. Compared to NCp7, 2NCp7 exhibited a much higher Psi-selectivity and SL3-affinity, similar to Gag, whereas 0NCp7 exhibited a lower Psi-selectivity and SL3-affinity, similar to the H23&H44K double mutant of NCp7, indicating that the different RNA-binding property of Gag NC domain and the mature NCp7 may be resulted, at least partially, from their different zinc content. This study will be helpful to elucidate the critical roles that zinc played in the viral life cycle, and benefit further investigations of the functional switch from the NC domain of Gag to the mature NCp7.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1638
Author(s):  
Clotilde Muller ◽  
Sophie Alain ◽  
Claire Gourin ◽  
Thomas F. Baumert ◽  
Gaëtan Ligat ◽  
...  

Human cytomegalovirus (HCMV) can cause serious diseases in immunocompromised patients. Current antiviral inhibitors all target the viral DNA polymerase. They have adverse effects, and prolonged treatment can select for drug resistance mutations. Thus, new drugs targeting other stages of replication are an urgent need. The terminase complex (pUL56–pUL89–pUL51) is highly specific, has no counterpart in the human organism, and thus represents a target of choice for new antivirals development. This complex is required for DNA processing and packaging. pUL52 was shown to be essential for the cleavage of concatemeric HCMV DNA and crucial for viral replication, but its functional domains are not yet identified. Polymorphism analysis was performed by sequencing UL52 from 61 HCMV naive strains and from 14 HCMV strains from patients treated with letermovir. Using sequence alignment and homology modeling, we identified conserved regions and potential functional motifs within the pUL52 sequence. Recombinant viruses were generated with specific serine or alanine substitutions in these putative patterns. Within conserved regions, we identified residues essential for viral replication probably involved in CXXC-like or zinc finger motifs. These results suggest that they are essential for pUL52 structure/function. Thus, these patterns represent potential targets for the development of new antivirals.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0250750
Author(s):  
Wenjie Wu ◽  
Philip T. LoVerde

Since the first complete set of Platyhelminth nuclear receptors (NRs) from Schistosoma mansoni were identified a decade ago, more flatworm genome data is available to identify their NR complement and to analyze the evolutionary relationship of Platyhelminth NRs. NRs are important transcriptional modulators that regulate development, differentiation and reproduction of animals. In this study, NRs are identified in genome databases of thirty-three species including in all Platyhelminth classes (Rhabditophora, Monogenea, Cestoda and Trematoda). Phylogenetic analysis shows that NRs in Platyhelminths follow two different evolutionary lineages: 1) NRs in a free-living freshwater flatworm (Schmidtea mediterranea) and all parasitic flatworms share the same evolutionary lineage with extensive gene loss. 2) NRs in a free-living intertidal zone flatworm (Macrostomum lignano) follow a different evolutionary lineage with a feature of multiple gene duplication and gene divergence. The DNA binding domain (DBD) is the most conserved region in NRs which contains two C4-type zinc finger motifs. A novel zinc finger motif is identified in parasitic flatworm NRs: the second zinc finger of parasitic Platyhelminth HR96b possesses a CHC2 motif which is not found in NRs of all other animals studied to date. In this study, novel NRs (members of NR subfamily 3 and 6) are identified in flatworms, this result demonstrates that members of all six classical NR subfamilies are present in the Platyhelminth phylum. NR gene duplication, loss and divergence in Platyhelminths are analyzed along with the evolutionary relationship of Platyhelminth NRs.


2021 ◽  
Author(s):  
Wenjie Wu ◽  
Philip T. LoVerde

Since the first complete set of Platyhelminth nuclear receptors (NRs) from Schistosoma mansoni were identified a decade ago, more flatworm genome data is available to identify their NR complement and to analyze the evolutionary relationship of Platyhelminth NRs. NRs are important transcriptional modulators that regulate development, differentiation and reproduction of animals. In this study, NRs are identified in genome databases of thirty-three species including in all Platyhelminth classes (Rhabditophora, Monogenea, Cestoda and Trematoda). Phylogenetic analysis shows that NRs in Platyhelminths follow two different evolutionary lineages: 1) NRs in a free-living freshwater flatworm ( Schmidtea mediterranea ) and all parasitic flatworms share the same evolutionary lineage with extensive gene loss. 2) NRs in a free-living intertidal zone flatworm ( Macrostomum lignano ) follow a different evolutionary lineage with a feature of multiple gene duplication and gene divergence. The DNA binding domain (DBD) is the most conserved region in NRs which contains two C4-type zinc finger motifs. A novel zinc finger motif is identified in parasitic flatworm NRs: the second zinc finger of parasitic Platyhelminth HR96b possesses a CHC2 motif which is not found in NRs of all other animals. In this study, novel NRs (members of NR subfamily 3 and 6) are identified in flatworms, this result demonstrates that members of all six classical NR subfamilies are present in the Platyhelminth phylum. NR gene duplication, loss and divergence in Platyhelminths are analyzed along with the evolutionary relationship of Platyhelminth NRs.


2021 ◽  
Vol 22 (4) ◽  
pp. 2212 ◽  
Author(s):  
Joanna Sobocińska ◽  
Sara Molenda ◽  
Marta Machnik ◽  
Urszula Oleksiewicz

Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Man Pan ◽  
Qingyun Zheng ◽  
Yuanyuan Yu ◽  
Huasong Ai ◽  
Yuan Xie ◽  
...  

Abstractp97, also known as valosin-containing protein (VCP) or Cdc48, plays a central role in cellular protein homeostasis. Human p97 mutations are associated with several neurodegenerative diseases. Targeting p97 and its cofactors is a strategy for cancer drug development. Despite significant structural insights into the fungal homolog Cdc48, little is known about how human p97 interacts with its cofactors. Recently, the anti-alcohol abuse drug disulfiram was found to target cancer through Npl4, a cofactor of p97, but the molecular mechanism remains elusive. Here, using single-particle cryo-electron microscopy (cryo-EM), we uncovered three Npl4 conformational states in complex with human p97 before ATP hydrolysis. The motion of Npl4 results from its zinc finger motifs interacting with the N domain of p97, which is essential for the unfolding activity of p97. In vitro and cell-based assays showed that the disulfiram derivative bis-(diethyldithiocarbamate)-copper (CuET) can bypass the copper transporter system and inhibit the function of p97 in the cytoplasm by releasing cupric ions under oxidative conditions, which disrupt the zinc finger motifs of Npl4, locking the essential conformational switch of the complex.


Sign in / Sign up

Export Citation Format

Share Document