selective sweep
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 62)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ignacio Rodriguez-Brenes ◽  
Dominik Wodarz ◽  
Natalia Komarova

Spatial stochastic simulations of evolutionary processes are computationally expensive. Here, based on spatially explicit decoupling approximations (SEDA) introduced by us earlier, we derive a deterministic approximation to a spatial stochastic birth-death process in the presence of two types: the less advantageous resident type and a more advantageous mutant. At the core of this technique are two essential steps: (1) a system of ODEs that approximate spatial interactions among neighboring individuals must be solved; (2) the time-variable has to be rescaled with a factor (called "alpha") that depends on the kinetic parameters of the wild type and mutant individuals. An explicit formula for alpha is derived, which is a power law of division and death rates of the two types. The method is relatively fast and provides excellent time-series agreement with the stochastic simulation results for the spatial agent-based model. The methodology can be used to describe hard selective sweep events, including the expansion of driver mutations in carcinogenesis, bacterial evolution, and aspects of resistance dynamics.


2021 ◽  
Author(s):  
Yiyi Guo ◽  
Ying Xu ◽  
Tao Yan ◽  
Lixi Jiang ◽  
Jie Dong ◽  
...  

Abstract Rapeseed (Brassica napus) is an important oilseed crop, which is widely planted in the world. In a previous study, we collected 991 accessions of rapeseed from the worldwide germplasm and revealed genetic polymorphisms within these germplasm by whole-genome resequencing. However, management of such a large amount of accessions is time-consuming, laborious and costly. Therefore, we constructed a core collection of rapeseed consisting of 300 worldwide accessions based on their genetic diversity. Compared with 991 accessions, the worldwide core collection showed similar geographic distribution, the proportion of three ecotypes, nucleotide diversity and the associated SNPs of flowering time. Besides, we identified FT ortholog (BnaA02g12130D) and FLC ortholog (BnaA10g22080D) responsible for flowering time and ecotype differentiation through selective sweep analysis and genome-wide association analysis (GWAS) of flowering time using the rapeseed core collection. FT and FLC are two well-known genes regulating flowering time in Arabidopsis. These results indicate that the worldwide core collection can represent the genetic diversity of 991 worldwide accessions, which could be more efficiently used for phenotypic and genetic studies in rapeseed.


2021 ◽  
Author(s):  
Abdulfatai Tijjani ◽  
Bashir Salim ◽  
Marcos Vinicius Barbosa da Silva ◽  
Hamza A Eltahir ◽  
Taha H Musa ◽  
...  

Sudan, the largest country in Africa, acts as a corridor between North and sub-Saharan Africa along the river Niles. It comprises warm arid and semi-arid grazing lands, and it is home to the second-largest African population of indigenous livestock. Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector diseases challenges. We investigated genome diversity in six indigenous African zebu breeds sampled in Sudan (Aryashai, Baggara, Butana, Fulani, Gash, and Kenana). We adopted three genomic scan approaches to identify candidate selective sweeps regions (ZHp, FST, XP-EHH). We identified a set of gene-rich selective sweep regions shared across African and Asian zebu or unique to Sudanese zebu. In particular, African and Asian zebu candidate gene-rich regions are detected on chromosomes 2, 5 and 7. They include genes involved in immune response, body size and conformation, and stress response to heat. In addition, a 250 kb selective sweep on chromosome 16 was detected exclusively in five Sudanese zebu populations. This region spans seven genes, including PLCH2, PEX10, PRKCZ and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Together, these genes may contribute to the zebu cattle resilience to heat, nutritional and water shortages. Our results highlight the putative importance of selection at gene-rich genome regions, which might be under a common regulatory genetic control, as an evolutionary mechanism for rapid adaptation to the complexity of environmental challenges.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjaya Gyawali ◽  
Gehendra Bhattarai ◽  
Ainong Shi ◽  
Chris Kik ◽  
Lindsey J. du Toit

Genotype-by-sequencing (GBS) was used to explore the genetic diversity and structure of Spinacia turkestanica, and the selective sweeps involved in domestication of cultivated spinach, S. oleracea, from S. turkestanica. A total 7,065 single nucleotide polymorphisms (SNPs) generated for 16 Spinacia oleracea and 76 S. turkestanica accessions placed the S. oleracea accessions in one group, Q1, and the 76 S. turkestanica accessions, which originated from Central Asia, in two distinct groups, Q2 and Q3. The Q2 group shared greater genetic identity with the S. oleracea accessions, Q1, than the Q3 S. turkestanica group. Likewise, the S. oleracea Q1 group had a smaller Fst (0.008) with the Q2 group than with the Q3 group (Fst = 0.012), and a greater gene flow (Nm = 30.13) with the Q2 group than with the Q3 group (Nm = 21.83). The Q2 accessions originated primarily from Uzbekistan while the Q3 accessions originated mostly from Tajikistan. The Zarafshan Mountain Range appears to have served as a physical barrier that largely separated members of the Q2 and Q3 groups of S. turkestanica. Accessions with admixtures of Q2 and Q3 were collected primarily from lower elevations at the southern end of the Zarafshan Mountain Range in Uzbekistan. Selective sweep regions identified at 32, 49, and 52 Mb on chromosomes 1, 2, and 3, respectively, appear to have played a vital role in the domestication of S. oleracea as they are correlated with important domestication traits, including day length sensitivity for bolting (flowering). High XP-CLR scores at the 52 Mb genomic region of chromosome three suggest that a selective sweep at this region was responsible for early differentiation of S. turkestanica into two groups in Central Asia.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junchen Deng ◽  
Giacomo Assandri ◽  
Pallavi Chauhan ◽  
Ryo Futahashi ◽  
Andrea Galimberti ◽  
...  

Abstract Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. Method The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. Conclusions Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.


2021 ◽  
Vol 22 (9) ◽  
pp. 757-766
Author(s):  
Dongyun Xin ◽  
Yangyang Bai ◽  
Yi Bi ◽  
Libang He ◽  
Yuxin Kang ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
Author(s):  
Rebecca Spanner ◽  
Demetris Taliadoros ◽  
Jonathan Richards ◽  
Viviana Rivera-Varas ◽  
Jonathan Neubauer ◽  
...  

Abstract The rapid and widespread evolution of fungicide resistance remains a challenge for crop disease management. The demethylation inhibitor (DMI) class of fungicides is a widely used chemistry for managing disease, but there has been a gradual decline in efficacy in many crop pathosystems. Reliance on DMI fungicides has increased resistance in populations of the plant pathogenic fungus Cercospora beticola worldwide. To better understand the genetic and evolutionary basis for DMI resistance in C. beticola, a genome-wide association study (GWAS) and selective sweep analysis were conducted for the first time in this species. We performed whole-genome resequencing of 190 C. beticola isolates infecting sugar beet (Beta vulgaris ssp. vulgaris). All isolates were phenotyped for sensitivity to the DMI tetraconazole. Intragenic markers on chromosomes 1, 4, and 9 were significantly associated with DMI fungicide resistance, including a polyketide synthase gene and the gene encoding the DMI target CbCYP51. Haplotype analysis of CbCYP51 identified a synonymous mutation (E170) and nonsynonymous mutations (L144F, I387M, and Y464S) associated with DMI resistance. Genome-wide scans of selection showed that several of the GWAS mutations for fungicide resistance resided in regions that have recently undergone a selective sweep. Using radial plate growth on selected media as a fitness proxy, we did not find a trade-off associated with DMI fungicide resistance. Taken together, we show that population genomic data from a crop pathogen can allow the identification of mutations conferring fungicide resistance and inform about their origins in the pathogen population.


2021 ◽  
Author(s):  
Antoine Moinet ◽  
Laurent Excoffier ◽  
Stephan Peischl

A strong reduction in diversity around a specific locus is often interpreted as a recent rapid fixation of a positively selected allele, a phenomenon called a selective sweep. Rapid fixation of neutral variants can however lead to similar reduction in local diversity, especially when the population experiences changes in population size, e.g., bottlenecks or range expansions. The fact that demographic processes can lead to signals of nucleotide diversity very similar to signals of selective sweeps is at the core of an ongoing discussion about the roles of demography and natural selection in shaping patterns of neutral variation. Here we quantitatively investigate the shape of such neutral valleys of diversity under a simple model of a single population size change, and we compare it to signals of a selective sweep. We analytically describe the expected shape of such neutral sweeps and show that selective sweep valleys of diversity are, for the same fixation time, wider than neutral valleys. On the other hand, it is always possible to parametrize our model to find a neutral valley that has the same width as a given selected valley. We apply our framework to the case of a putative selective sweep signal around the gene Quetzalcoatl in D. melanogaster and show that the valley of diversity in the vicinity of this gene is compatible with a short bottleneck scenario without selection. Our findings provide further insight in how simple demographic models can create valleys of genetic diversity that may falsely be attributed to positive selection.


2021 ◽  
Vol 10 (15) ◽  
pp. 3276
Author(s):  
Philippe Colson ◽  
Christian A. Devaux ◽  
Jean-Christophe Lagier ◽  
Philippe Gautret ◽  
Didier Raoult

Since summer 2020, SARS-CoV-2 strains at the origin of the COVID-19 pandemic have suddenly been replaced by new SARS-CoV-2 variants, some of which are highly transmissible and spread at a high rate. These variants include the Marseille-4 lineage (Nextclade 20A.EU2) in Europe, the 20I/501Y.V1 variant first detected in the UK, the 20H/501Y.V2 variant first detected in South Africa, and the 20J/501Y.V3 variant first detected in Brazil. These variants are characterized by multiple mutations in the viral spike protein that is targeted by neutralizing antibodies elicited in response to infection or vaccine immunization. The usual coronavirus mutation rate through genetic drift alone cannot account for such rapid changes. Recent reports of the occurrence of such mutations in immunocompromised patients who received remdesivir and/or convalescent plasma or monoclonal antibodies to treat prolonged SARS-CoV-2 infections led us to hypothesize that experimental therapies that fail to cure the patients from COVID-19 could favor the emergence of immune escape SARS-CoV-2 variants. We review here the data that support this hypothesis and urge physicians and clinical trial promoters to systematically monitor viral mutations by whole-genome sequencing for patients who are administered these treatments.


Cell ◽  
2021 ◽  
Author(s):  
Lin Kang ◽  
Guijuan He ◽  
Amanda K. Sharp ◽  
Xiaofeng Wang ◽  
Anne M. Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document