Pertussis toxin prevents adenosine receptor- and m-cholinoceptor-mediated sinus rate slowing and AV conduction block in the guinea-pig heart

2004 ◽  
Vol 339-339 (1-2) ◽  
pp. 152-158 ◽  
Author(s):  
Michael B�hm ◽  
Wilhelm Schmitz ◽  
Hasso Scholz ◽  
Anke Wilken
2013 ◽  
Vol 61 (S 01) ◽  
Author(s):  
S Pecha ◽  
F Weinberger ◽  
Y Yildirim ◽  
B Sill ◽  
L Conradi ◽  
...  

1994 ◽  
Vol 3 (1) ◽  
pp. 45-51
Author(s):  
M. Gollasch ◽  
T. Kleppisch ◽  
D. Krautwurst ◽  
D. Lewinsohn ◽  
J. Hescheler

Platelet-activating factor (PAF) inhibits single inwardly rectifying K+channels in guinea-pig ventricular cells. There is currently little information as to the mechanism by which these channels are modulated. The effect of PAF on quasi steady-state inwardly rectifying K+currents (presumably of the IK1type) of auricular, atrial and ventricular cardiomyocytes from guinea-pig were studied. Applying the patch-clamp technique in the whole-cell configuration, PAF (10 nM) reduced the K+currents in all three cell types. The inhibitory effect of PAF occurred within seconds and was reversible upon wash-out. It was almost completely abolished by the PAF receptor antagonist BN 50730. Intracellular infusion of atrial cells with guanine 5′-(β-thio)diphosphate (GDPS) or pretreatment of cells with pertussis toxin abolished the PAF dependent reduction of the currents. Neither extracellularly applied isoproterenol nor intracellularly applied adenosine 3′,5′-cyclic monophosphate (cyclic AMP) attenuated the PAF effect. In multicellular preparations of auricles, PAF (10 nM) induced arrhythmias. The arrhythmogenic activity was also reduced by BN 50730. The data indicate that activated PAF receptors inhibit inwardly rectifying K+currents via a pertussis toxin sensitive G-protein without involvement of a cyclic AMP-dependent step. Since IK1is a major component in stabilizing the resting membrane potential, the observed inhibition of this type of channel could play an important role in PAF dependent arrhythmogenesis in guinea-pig heart.


1997 ◽  
Vol 52 (3) ◽  
pp. 491-498 ◽  
Author(s):  
Jiahui Zhang ◽  
Luiz Belardinelli ◽  
Kenneth A. Jacobson ◽  
Deborah H. Otero ◽  
Stephen P. Baker

1986 ◽  
Vol 251 (4) ◽  
pp. H710-H715
Author(s):  
W. W. Tse

The canine atrioventricular (AV) junction comprises three major tissues: paranodal fibers (PNF), AV node (AVN), and His bundle (HB). In the present study, dissection-exposed, in vitro canine AV junctional preparations were used. The object of the study was to determine whether the PNF or AVN was more sensitive to the suppressive effect of acetylcholine (ACh). In five experiments these tissues were stimulated antegradely and retrogradely, and their action potentials were recorded simultaneously under the influence of ACh (0.5 micrograms/ml). Results indicated the PNF were more sensitive to the suppressive effect of ACh than were the AVN. In another group of 13 experiments, the effects of ACh at 0.05-0.3 micrograms/ml on rate of rise of phase 0 of action potentials (Vmax), peak potential, resting membrane potential, and action potential duration of the PNF were determined. Results indicated that ACh exerted a strong suppressive effect on Vmax and amplitude of the action potentials and had little effect on the resting membrane potential and action potential duration of the PNF. In 10 of 13 preparations, ACh also suppressed the response of PNF, resulting in generation of one action potential to every two stimuli. In conclusion, these findings suggest that PNF could be the tissue responsible for vagal-induced AV conduction block.


Author(s):  
W. Allen Shannon ◽  
Hannah L. Wasserkrug ◽  
andArnold M. Seligman

The synthesis of a new substrate, p-N,N-dimethylamino-β-phenethylamine (DAPA)3 (Fig. 1) (1,2), and the testing of it as a possible substrate for tissue amine oxidase activity have resulted in the ultracytochemical localization of enzyme oxidase activity referred to as DAPA oxidase (DAPAO). DAPA was designed with the goal of providing an amine that would yield on oxidation a stronger reducing aldehyde than does tryptamine in the histochemical demonstration of monoamine oxidase (MAO) with tetrazolium salts.Ultracytochemical preparations of guinea pig heart, liver and kidney and rat heart and liver were studied. Guinea pig kidney, known to exhibit high levels of MAO, appeared the most reactive of the tissues studied. DAPAO reaction product appears primarily in mitochondrial outer compartments and cristae (Figs. 2-4). Reaction product is also localized in endoplasmic reticulum, cytoplasmic vacuoles and nuclear envelopes (Figs. 2 and 3) and in the sarcoplasmic reticulum of heart.


Sign in / Sign up

Export Citation Format

Share Document