Stimulation and inhibition of cardiac myocyte proliferation in vitro

1990 ◽  
Vol 92 (2) ◽  
Author(s):  
Elissavet Kardami
1993 ◽  
Vol 101 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Alberto Corsini ◽  
Maria Mazzotti ◽  
Marco Raiteri ◽  
Maurizio R. Soma ◽  
Giulio Gabbiani ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 466-466
Author(s):  
Jill A. Macoska ◽  
Lesa Begley ◽  
Christine Monteleon ◽  
James W. MacDonald ◽  
Rajal B. Shah

1982 ◽  
Vol 54 (4) ◽  
pp. 763-768 ◽  
Author(s):  
Ronald E. Allen ◽  
Gail Robinson ◽  
Matthew J. Parsons ◽  
Robert A. Merkel ◽  
William T. Magee

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengchuan Zhang ◽  
Ruogu Xu ◽  
Yang Yang ◽  
Chaoan Liang ◽  
Xiaolin Yu ◽  
...  

Abstract Background Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. Results We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. Conclusions These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants.


2002 ◽  
Vol 266 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Seung Yup Ku ◽  
Y. M. Choi ◽  
Chang Suk Suh ◽  
Seok Hyun Kim ◽  
Jung Gu Kim ◽  
...  

2011 ◽  
Vol 14 (9) ◽  
pp. 1023-1031 ◽  
Author(s):  
Satyakumar Vidyashankar ◽  
Sandeep R. Varma ◽  
Mohammed Azeemudin ◽  
Ashok Godavarthi ◽  
Nandakumar S. Krishna ◽  
...  

2005 ◽  
Vol 16 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Evaggelia S. Arsenou ◽  
Evangelia P. Papadimitriou ◽  
Eleni Kliafa ◽  
Maria Hountala ◽  
Sotiris S. Nikolaropoulos

1993 ◽  
Vol 66 (3) ◽  
pp. 201-211 ◽  
Author(s):  
Balu H. Athreya ◽  
Jonathan Pletcher ◽  
Francesco Zulian ◽  
David B. Weiner ◽  
William V. Williams

1997 ◽  
Vol 51 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
Masashi Haraguchi ◽  
Mikio Okamura ◽  
Masayo Konishi ◽  
Yoshio Konishi ◽  
Nobuo Negoro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document