mesangial cell
Recently Published Documents


TOTAL DOCUMENTS

1005
(FIVE YEARS 30)

H-INDEX

67
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Richard E. Slavin

Segmental arterial mediolysis (SAM), an uncommon vasospastic arteriopathy occurring in the muscular arteries innervated by the peripheral sympathetic nervous system, usually presents with catastrophic abdominal and retroperitoneal hemorrhages in elderly patients. SAM is initiated by the coupling of norepinephrine to plastically derived hyperdense foci of alpha-1 adrenergic receptors on the sarcolemma of arterial muscle. This ligand is created by stimuli signaled by iatrogenic sympathomimetic agonists, some beta-2 agonists, or an excessive release of adrenal catecholamines. Coupling of this ligand with cytoplasmic heterotrimeric Gq protein excessively signals a cascade of biochemical events generating two principal lesions of injurious-phase SAM—the shearing of the outer media from the adventitia and an overload of cytoplasmic calcium ions toxic to mitochondria causing mediolysis and/or apoptosis. The massive hemorrhages are caused by ruptured gap aneurysms created by the transmedial loss of the medial muscle. A norepinephrine-directed reparative response rapidly develops either resolving angiographic injurious lesions or creating a body of vascular disorders, the new guises of SAM with ischemic clinical profiles. These present in the epicardial, vertebral, intestinal, and retroperitoneal arteries, often in younger females as fibromuscular dysplasia, dissecting hematomas, and persistent aneurysms. Norepinephrine can crosstalk with other pressor agents to create SAM lesions—serotonin with idiopathic pulmonary hypertension and persistent pulmonary hypertension in the newborn, histamine in spontaneous coronary artery dissections with eosinophilia, and endothelin-1 in a field effect generated by SAM that creates venous fibromuscular dysplasia. Norepinephrine also participates in the collateral development of mesangial hyperplasia with focal segmental glomerulosclerosis and myocardial mediolysis and apoptosis in subjects with markedly elevated heart rates. Conclusion. Norepinephrine coupling with plastically elevated alpha-1 adrenoceptor or other pressor agents generates SAM, a histologically recognizable vasospastic arteriopathy, that with repair is transformed into several different standardized arterial diseases that alter SAM’s clinical profile from a hemorrhagic to an ischemic disorder.



2021 ◽  
Vol 10 (18) ◽  
pp. 4236
Author(s):  
Won Jung Choi ◽  
Yu Ah Hong ◽  
Ji Won Min ◽  
Eun Sil Koh ◽  
Hyung Duk Kim ◽  
...  

IgA nephropathy (IgAN) is a globally well-known primary glomerular nephropathy. Hypertriglyceridemia (HTG) is one factor contributing to atherosclerosis and is a common complication of renal failure. HTG is a significant risk factor for decreased renal function in patients with IgAN. We evaluated the association of HTG with the histopathological features of IgAN patients. A total of 480 patients diagnosed with IgAN via kidney biopsy from eight university hospitals affiliated with the College of Medicine of the Catholic University of Korea were included in the final cohort. Pathological features were evaluated by eight expert pathologists with hospital consensus. HTG was defined as a serum triglyceride (TG) level of ≥150 mg/dL. In the study population analysis, the HTG group was older, with more males; higher body mass index (BMI), low-density lipoprotein cholesterol (LDL-C) and spot urine protein ratio; and lower estimated glomerular filtration rate (eGFR). In the lipid profile analysis, eGFR was negatively correlated with TGs/ high-density lipoprotein cholesterol (HDL) and triglyceride-glucose index (TyG). Proteinuria positively correlated with TGs/HDL, non-HDL/HDL, LDL/HDL, TyG, TGs and LDL. The percentages of global sclerosis (GS), segmental sclerosis (SS) and capsular adhesion (CA), and the scores for mesangial matrix expansion (MME) and mesangial cell proliferation (MCP), were more elevated in the HTG group compared to the normal TG group. Multivariable linear regression analysis showed that the percentages of global sclerosis, segmental sclerosis and capsular adhesion, as well as the scores for mesangial matrix expansion and mesangial cell proliferation, were positively associated with TG level. In binary logistic regression, the HTG group showed a higher risk for global sclerosis and segmental sclerosis. In conclusion, HTG is a significant risk factor for glomerulosclerosis in IgAN.





Author(s):  
Shimrit Avraham ◽  
Ben Korin ◽  
Jun-Jae Chung ◽  
Leif Oxburgh ◽  
Andrey S. Shaw
Keyword(s):  


2021 ◽  
Vol 84 ◽  
pp. 104578
Author(s):  
Meng Tan ◽  
Chengde Fan ◽  
Minzhu Wang ◽  
Xinyu Li ◽  
Ruiying Yuan ◽  
...  


2021 ◽  
Vol 12 ◽  
Author(s):  
Hansen Yang ◽  
Jia Wang ◽  
Zheng Zhang ◽  
Rui Peng ◽  
Dan Lv ◽  
...  

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus. Long non-coding RNAs (lncRNAs) are regulators in DN progression. However, the regulatory mechanisms of multiple lncRNAs in DN remain to be determined. Our aim was to investigate the function and molecular mechanism of lncRNA RNA component of mitochondrial RNAase P (Rmrp) in DN. Here, we observed that the expression of Rmrp was up-regulated in the kidney of db/db DN mice and high glucose induced glomerular mesangial cells (MC). More importantly, the abnormal transcription of Rmrp was induced by nuclear transcription factor Sp1, which promotes the proliferation and production of fibrotic markers in MC. Subsequently, we screened the miRNAs related to Rmrp and found that Rmrp and miR-1a-3p are co-localized at the subcellular level of MC, and Rmrp could directly binds to miR-1a-3p. Further mechanism research demonstrated that the elevated miR-1a-3p significantly attenuated the proliferation and fibrosis-promoting effects induced by up-regulation of Rmrp. At the same time, we also investigated that miR-1a-3p can directly bind to Jun D proto-oncogene (JunD), thereby regulating the protein level of JunD. Rmrp-induced proliferation and fibrogenesis were reversed by co-transfection with JunD siRNA. In summary, Sp1 induced lncRNA Rmrp could drive the expression of JunD via sponging miR-1a-3p in DN progression.



2021 ◽  
Vol 22 (14) ◽  
pp. 7589
Author(s):  
Anberitha T. Matthews ◽  
Hitesh Soni ◽  
Katherine E. Robinson-Freeman ◽  
Theresa A. John ◽  
Randal K. Buddington ◽  
...  

Doxorubicin (DOX), a category D pregnancy drug, is a chemotherapeutic agent that has been shown in animal studies to induce fetal toxicity, including renal abnormalities. Upregulation of the transient receptor potential cation (TRPC) 6 channel is involved in DOX-induced podocyte apoptosis. We have previously reported that TRPC6-mediated Ca2+ signaling promotes neonatal glomerular mesangial cell (GMC) death. However, it is unknown whether DOX alters mesangial TRPC expression or viability in the fetus. In this study, cell growth was tracked in control and DOX-treated primary GMCs derived from fetal pigs. Live-cell imaging demonstrated that exposure to DOX inhibited the proliferation of fetal pig GMCs and induced cell death. DOX did not alter the TRPC3 expression levels. By contrast, TRPC6 protein expression in the cells was markedly reduced by DOX. DOX treatment also attenuated the TRPC6-mediated intracellular Ca2+ elevation. DOX stimulated mitochondrial reactive oxygen species (mtROS) generation and mitophagy by the GMCs. The DOX-induced mtROS generation and apoptosis were reversed by the mitochondria-targeted antioxidant mitoquinone. These data suggest that DOX-induced fetal pig GMC apoptosis is independent of TRPC6 channel upregulation but requires mtROS production. The mtROS-dependent GMC death may contribute to DOX-induced fetal nephrotoxicity when administered prenatally.



Sign in / Sign up

Export Citation Format

Share Document