extracellular secretion
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 39)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Gabriel Sturm ◽  
Kalpita R Karan ◽  
Balaji S Santhanham ◽  
Tanja Taivassalo ◽  
Celine Bris ◽  
...  

Patients with primary mitochondrial diseases present with fatigue and multi-system disease, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. Integrating data from 17 cohorts of patients with mitochondrial diseases (n=690), we find that clinical mitochondrial disorders increase resting energy expenditure, a state termed hypermetabolism. In a longitudinal cellular model of primary patient-derived fibroblasts from multiple donors, we show that genetic and pharmacological disruptions of oxidative phosphorylation (OxPhos) similarly trigger increased energy consumption in a cell-autonomous manner, despite near-normal OxPhos coupling efficiency. Hypermetabolism was associated with mtDNA instability, activation of the integrated stress response, increased extracellular secretion of age-related cytokines and metabokines including GDF15, as well as an accelerated rate of telomere erosion and epigenetic aging, and a reduced Hayflick limit. Finally, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations to OxPhos dysfunction. Hypermetabolism, or the increased energetic cost of living in mitochondrial diseases, has important biological and clinical implications.


Author(s):  
Panting Liu ◽  
Bo Wu ◽  
Mao Chen ◽  
Yonghua Dai ◽  
Chao Song ◽  
...  

Zymomonas mobilis ( Z. mobilis ) is a potential candidate for consolidated bioprocessing (CBP) strain in lignocellulosic biorefinery. However, the low-level secretion of cellulases limits this CBP process, and the mechanism of protein secretion affected by cell wall peptidoglycan is also not well understood. Here we constructed several Penicillin Binding Proteins (PBPs)-deficient strains derivated from Z. mobilis S192 to perturb the cell wall peptidoglycan network and investigated the effects of peptidoglycan on the endoglucanase secretion. Results showed that extracellular recombinant endoglucanase production was significantly enhanced in PBPs mutant strains, notably, △1089/0959 (4.09-fold) and △0959 (5.76-fold) in comparison to parent strains. Besides, for PBPs-deficient strains, the growth performance was not significantly inhibited but with enhanced antibiotic sensitivity and reduced inhibitor tolerance, otherwise, cell morphology was altered obviously. The concentration of intracellular soluble peptidoglycan was increased, especially for single gene deletion. Outer membrane permeability of PBPs-deficient strains was also improved, notably, △1089/0959 (1.14-fold) and △0959 (1.07-fold), which might explain the increased endoglucanase extracellular secretion. Our finding indicated that PBPs-deficient Z. mobilis is capable of increasing endoglucanase extracellular secretion via cell wall peptidoglycan disturbance and it will provide a foundation for the development of CBP technology in Z. mobilis in the future. IMPORTANCE Cell wall peptidoglycan has the function to maintain cell robustness, and also acts as the barrier to secret recombinant proteins from the cytoplasm to extracellular space in Z. mobilis and other bacterias. Herein, we perturb the peptidoglycan synthesis network via knocking out PBPs ( ZMO0197 , ZMO0959 , ZMO1089 ) in order to enhance recombinant endoglycanase extracellular secretion in Z. mobilis S912. This study can not only lay the foundation for understanding the regulatory network of cell wall synthesis but also provide guidance for the construction of CBP strains in Z. mobilis .


2021 ◽  
Author(s):  
sha xu ◽  
Cheng He ◽  
Zhenjun Kang ◽  
Shuqun Song ◽  
Caiwen Li

Abstract The interaction between bacteria and phytoplankton during bloom events are complicated throughout the developmental processes of algal blooms. The detailed ecological roles of bacterioplankton during algal blooms still need to be investigated comprehensively. With the assistance of omics techniques, the composition and function of bacterioplankton were studied during the blooming and recession periods of Phaeocystis globosa in the Beibu Gulf, China. The transcriptionally active taxa of Vibrio, which correlated with most functional genes, were enriched in the blooming period, whereas the active microbial groups, such as Erythrobacter and Candidatus puniceispirillum, increased significantly in the recession period of the P. globosa bloom. The transcriptional analyses indicated the blooming and recession periods of P. globosa had different impacts on the function of bacterioplankton, including shifts in expression of specific metabolic pathways for variable nutritional utilization and their advantage in bacterial motility, quorum sensing, and extracellular secretion. Overall, the integrated field investigation and in-depth analysis of molecular data highlighted the difference of bacterial community during the outbreak and collapse stages of P. globosa bloom, and provided fundamental data for better understanding of the bacterial community in response to blooming and recession of the P. globosa bloom.


2021 ◽  
Author(s):  
Tina A Solvik ◽  
Tan A Nguyen ◽  
Yu-Hsiu T Lin ◽  
Timothy Marsh ◽  
Eric J. Huang ◽  
...  

The endosome-lysosome (endolysosome) system plays central roles in both autophagic degradation and secretory pathways, including the exocytic release of extracellular vesicles and particles (EVPs). Although previous work has revealed important interconnections between autophagy and EVP-mediated secretion, our molecular understanding of these secretory events during endolysosome inhibition remains incomplete. Here, we delineate a secretory autophagy pathway upregulated in response to endolysosomal inhibition that mediates the EVP-associated extracellular release of autophagic cargo receptors, including p62/SQSTM1. This extracellular secretion is highly regulated and critically dependent on multiple ATGs required for the progressive steps of early autophagosome formation as well as Rab27a-dependent exocytosis. Furthermore, the disruption of autophagosome maturation, either due to genetic inhibition of the autophagosome-to-autolyosome fusion machinery or blockade via the SARS-CoV2 viral protein ORF3a, is sufficient to induce robust EVP-associated secretion of autophagy cargo receptors. Finally, we demonstrate that this ATG-dependent, EVP-mediated secretion pathway buffers against the intracellular accumulation of autophagy cargo receptors when classical autophagic degradation is impaired. Based on these results, we propose that secretory autophagy via EVPs functions as an alternate route to clear sequestered material and maintain proteostasis in response to endolysosomal dysfunction or impaired autophagosome maturation.


2021 ◽  
Author(s):  
Zac Elmore ◽  
L Patrick Havlik ◽  
Daniel K Oh ◽  
Heather A Vincent ◽  
Aravind Asokan

Adeno-associated viruses (AAV) rely on helper viruses to transition from latency to lytic infection. Some recombinant AAV serotypes are secreted in a pre-lytic manner as extracellular vesicle (EV)-associated particles, although mechanisms underlying such are unknown. Here, we discover that the membrane-associated accessory protein (MAAP), expressed from a (+1) frameshifted open reading frame (ORF) in the AAV capsid (cap) gene, is a novel viral egress factor. MAAP contains a highly conserved, cationic amphipathic domain critical for AAV secretion. Wild type or recombinant AAV with a mutated MAAP start site (MAAPΔ) show markedly attenuated secretion and correspondingly, increased intracellular retention. Trans-complementation with recombinant MAAP restored extracellular secretion of multiple AAV/MAAPΔ serotypes. MAAP is sorted into recycling Rab11+ vesicles and strongly associates with EV markers upon fractionation. In addition to characterizing a novel viral egress factor, these studies highlight a prospective engineering platform to modulate secretion of AAV vectors or other EV-associated cargo.


2021 ◽  
Author(s):  
Shengwen Duan ◽  
Bingrong Xu ◽  
Lifeng Cheng ◽  
Xiangyuan Feng ◽  
Qi Yang ◽  
...  

Abstract The R&D of bio-degumming technology is under a slow progress due to the shortage of proper efficient bacterial strains and processes. A degumming bacterial strain—Pectobacterium wasabiae (PW)—with broad-spectrum degumming abilities was screened out in this study. After the fermentation for 12 h, the residual gum contents of kenaf bast, ramie bast, hemp bast, flax bast, and Apocynum venetum bast were all lower than 15%. This bacterial strain could realize the simultaneous extracellular secretion of pectinase, mannase, and xylanase with the maximum enzyme activity levels of 130.25, 157.58, and 115.24 IU/mL, respectively. The optimal degumming conditions of this bacterial strain were as follows: degumming time of 12 h, bath ratio of 1:10, temperature of 33 ℃, and inoculum size of 2%. After the bio-degumming through this bacterial strain, the COD in wastewater was below 4,000 mg/L, which was over 60% lower than that in boiling-off wastewater generated by chemical degumming. This technology achieves higher efficiency, higher quality, and lower pollution.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Philipp Boder ◽  
Sheon Mary ◽  
Lesley Graham ◽  
Christian Delles

Abstract Background and Aims Uromodulin (UMOD) is the most abundantly secreted protein found within the urine, primarily produced by medullary thick ascending limb (mTAL) epithelial cells of the kidneys. There is accruing genetic evidence implicating UMOD in blood pressure regulation and consequently hypertension. The molecular signaling induced by calcium in the kidney and its influence on blood pressure are not well understood. The aim of this study was to investigate the potential role of extracellular calcium and the calcium-sensing receptor (CaSR) in mTAL on UMOD production and secretion in TAL cells with the hope of defining novel clinical targets for the treatment of hypertension. Method Kidneys were harvested from normotensive Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) female rats. To determine the effect of extracellular calcium on UMOD secretion, mTAL tubules were incubated in media with and without 1mM calcium, nifedipine (10µM), NPS2143 (1 or 5 µM) and spermine (2mM). Extracellular and intracellular UMOD protein levels were detected by Western blot. Gene expression of Umod was determined by qRT-PCR. Results Calcium increased mTAL tubule UMOD secretion in WKY and SHRSP. Nifedipine slightly decreased UMOD secretion in WKY without calcium. In both strains, NPS2143 increased calcium-induced UMOD secretion, with an enhanced effect in SHRSP. Stimulation of CaSR with spermine decreased UMOD secretion in WKY. Analysis of intracellular UMOD levels in these conditions demonstrated increased accumulation when extracellular secretion was low, and vice versa. Incubation of primary mTAL cells with calcium confirmed increased localisation of UMOD at the membrane compared to the cytosol, without any major differences in cell morphology. The Umod mRNA level changes were not statistically significant among conditions. Conclusion Trafficking of UMOD in the mTAL is influenced by the type of CaSR ligand and the biased nature of G-protein coupled CaSR signalling. Unravelling the signalling events post-calcium will be necessary for identification of key regulators of UMOD secretion and provide new sites for therapeutic intervention in hypertension.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 910
Author(s):  
Rusan Catar ◽  
Guido Moll ◽  
Isa Hosp ◽  
Michele Simon ◽  
Christian Luecht ◽  
...  

Thrombin, the ligand of the protease-activated receptor 1 (PAR1), is a well-known stimulator of proangiogenic responses in vascular endothelial cells (ECs), which are mediated through the induction of vascular endothelial growth factor (VEGF). However, the transcriptional events underlying this thrombin-induced VEGF induction and angiogenic response are less well understood at present. As reported here, we conducted detailed promotor activation and signal transduction pathway studies in human microvascular ECs, to decipher the transcription factors and the intracellular signaling events underlying the thrombin and PAR-1-induced endothelial VEGF induction. We found that c-FOS is a key transcription factor controlling thrombin-induced EC VEGF synthesis and angiogenesis. Upon the binding and internalization of its G-protein-coupled PAR-1 receptor, thrombin triggers ERK1/2 signaling and activation of the nuclear AP-1/c-FOS transcription factor complex, which then leads to VEGF transcription, extracellular secretion, and concomitant proangiogenic responses of ECs. In conclusion, exposure of human microvascular ECs to thrombin triggers signaling through the PAR-1–ERK1/2–AP-1/c-FOS axis to control VEGF gene transcription and VEGF-induced angiogenesis. These observations offer a greater understanding of endothelial responses to thromboinflammation, which may help to interpret the results of clinical trials tackling the conditions associated with endothelial injury and thrombosis.


Sign in / Sign up

Export Citation Format

Share Document