The area postrema is not involved in osmotic activation of neurosecretory cells in the supraoptic nucleus

1992 ◽  
Vol 90 (2) ◽  
Author(s):  
K. Honda ◽  
T. Higuchi ◽  
S. Takano ◽  
H. Negoro
2012 ◽  
Vol 303 (2) ◽  
pp. R177-R185 ◽  
Author(s):  
J. Thomas Cunningham ◽  
Thekkethil Prashant Nedungadi ◽  
Joseph D. Walch ◽  
Eric J. Nestler ◽  
Helmut B. Gottlieb

Bile duct ligation (BDL), a model of hepatic cirrhosis, is associated with dilutional hyponatremia and inappropriate vasopressin release. ΔFosB staining was significantly increased in vasopressin and oxytocin magnocellular neurosecretory cells in the supraoptic nucleus (SON) of BDL rats. We tested the role of SON ΔFosB in fluid retention following BDL by injecting the SON ( n = 10) with 400 nl of an adeno-associated virus (AAV) vector expressing ΔJunD (a dominant negative construct for ΔFosB) plus green fluorescent protein (GFP) (AAV-GFP-ΔJunD). Controls were either noninjected or injected with an AAV vector expressing only GFP. Three weeks after BDL or sham ligation surgery, rats were individually housed in metabolism cages for 1 wk. Average daily water intake was significantly elevated in all BDL rats compared with sham ligated controls. Average daily urine output was significantly greater in AAV-GFP-ΔJunD-treated BDL rats compared with all other groups. Daily average urine sodium concentration was significantly lower in AAV-GFP-ΔJunD-treated BDL rats than the other groups, although average daily sodium excretion was not different among the groups. SON expression of ΔJunD produced a diuresis in BDL rats that may be related to decreased circulating levels of vasopressin or oxytocin. These findings support the view that ΔFosB expression in SON magnocellular secretory cells contribute to dilutional hyponatremia in BDL rats.


2009 ◽  
Vol 65 ◽  
pp. S219
Author(s):  
Toru Yokoyama ◽  
Toyoaki Ohbuchi ◽  
Tosihisa Nagatomo ◽  
Yoichi Ueta

1995 ◽  
Vol 268 (5) ◽  
pp. R1336-R1342 ◽  
Author(s):  
D. W. Smith ◽  
J. R. Sibbald ◽  
S. Khanna ◽  
T. A. Day

c-fos expression mapping and electrophysiological recording experiments were done to clarify the role of the A1 noradrenergic cell group in the vasopressin response to hypotensive hemorrhage. In pentobarbital-anesthetized rats, moderate and severe hypotensive hemorrhages were simulated by brief occlusion of the inferior vena cava sufficient to reduce mean arterial pressure to approximately 50 or 30 mmHg, respectively. Both stimuli significantly increased the number of A1 region catecholamine cells displaying Fos-like immunoreactivity, this effect being most prominent at the level of the area postrema. Both stimuli also increased the number of supraoptic nucleus vasopressin cells displaying Fos-like immunoreactivity. Accordingly, electrophysiological studies involving separate animals confirmed that both moderate and severe caval occlusion significantly increased the firing of functionally identified vasopressin cells recorded in the supraoptic nucleus. However, although interruption of A1 region neuronal function by injection of gamma-aminobutyric acid at the level of the area postrema eliminated the increase in vasopressin cell firing elicited by moderate caval occlusion, it did not block the response to severe caval occlusion. These findings suggest that, in the rat, the vasopressin response to an acute reduction in central blood volume, such as that produced by hemorrhage, depends on the A1 projection only if the stimulus is of moderate intensity. Severe stimuli appear to involve activation of both the A1 projection and an additional vasopressin-stimulatory pathway that bypasses the A1 region.


2005 ◽  
Vol 288 (4) ◽  
pp. R947-R955 ◽  
Author(s):  
Julia A. Freece ◽  
Julie E. Van Bebber ◽  
Dannielle K. Zierath ◽  
Douglas A. Fitts

The lamina terminalis was severed by a horizontal knife cut through the anterior commissure to determine the effects of a disconnection of the subfornical organ (SFO) on drinking and Fos-like immunoreactivity (Fos-ir) in the rat brain in response to an intragastric load of hypertonic saline (5 ml/kg of 1.5 M NaCl by gavage). After an initial load, knife-cut rats drank significantly less water than sham-cut rats, thus confirming a role for the SFO in osmotic drinking. After a second load at least 1 wk later, the rats were not allowed to drink after the gavage and were perfused for analysis of Fos-ir at 90 min. Compared with sham-cut rats, the knife-cut rats displayed significantly elevated Fos-ir in the main body of the SFO, in the dorsal cap of the organum vasculosum laminae terminalis, and in the ventral median preoptic nucleus after the hypertonic load. The knife cut significantly decreased Fos-ir in the supraoptic nucleus. Fos-ir was expressed mainly in the midcoronal and caudal parts of the area postrema of sham-cut rats, and this expression was greatly reduced in knife-cut rats. These findings strengthen the case for the presence of independently functioning osmoreceptors within the SFO and suggest that the structures of the lamina terminalis provide mutual inhibition during hypernatremia. They also demonstrate that the Fos-ir in the area postrema after intragastric osmotic loading is heavily dependent on the intact connectivity of the SFO.


2006 ◽  
Vol 190 (2) ◽  
pp. 213-223 ◽  
Author(s):  
Makoto Kawasaki ◽  
Tatsushi Onaka ◽  
Masamitsu Nakazato ◽  
Jun Saito ◽  
Takashi Mera ◽  
...  

We examined the effects of i.c.v. administration of neuro-peptide W-30 (NPW30) on plasma arginine vasopressin (AVP) and plasma oxytocin (OXT) using RIA. The induction of c-fos mRNA, AVP heteronuclear (hn)RNA, and c-Fos protein (Fos) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of rats were also investigated using in situ hybridization histochemistry for c-fos mRNA and AVP hnRNA, and immunohistochemistry for Fos. Both plasma AVP and OXT were significantly increased at 5 and 15 min after i.c.v. administration of NPW30 (2.8 nmol/rat). In situ hybridization histochemistry revealed that the induction of c-fos mRNA and AVP hnRNA in the SON and PVN were significantly increased 15, 30, and 60 min after i.c.v. administration of NPW30 (1.4 nmol/rat). Dual immunostaining for Fos/AVP and Fos/OXT revealed that both AVP-like immunoreactive (LI) cells and OXT-LI cells exhibited nuclear Fos-LI in the SON and PVN, 90 min after i.c.v. administration of NPW30 (2.8 nmol/rat). These results suggest that central NPW30 may be involved in the regulation of secretion of AVP and OXT in the magnocellular neurosecretory cells in the SON and PVN.


Sign in / Sign up

Export Citation Format

Share Document