Activity of dorsal respiratory group inspiratory neurons during laryngeal-induced fictive coughing and swallowing in decerebrate cats

1996 ◽  
Vol 108 (2) ◽  
Author(s):  
Christian Gestreau ◽  
St�phane Milano ◽  
ArmandLouis Bianchi ◽  
Laurent Gr�lot
2002 ◽  
Vol 87 (2) ◽  
pp. 1057-1067 ◽  
Author(s):  
Akira Haji ◽  
Mari Okazaki ◽  
Hiromi Yamazaki ◽  
Ryuji Takeda

To assess the functional significance of late inspiratory (late-I) neurons in inspiratory off-switching (IOS), membrane potential and discharge properties were examined in vagotomized, decerebrate cats. During spontaneous IOS, late-I neurons displayed large membrane depolarization and associated discharge of action potentials that started in late inspiration, peaked at the end of inspiration, and ended during postinspiration. Depolarization was decreased by iontophoresis of dizocilpine and eliminated by tetrodotoxin. Stimulation of the vagus nerve or the nucleus parabrachialis medialis (NPBM) also evoked depolarization of late-I neurons and IOS. Waves of spontaneous chloride-dependent inhibitory postsynaptic potentials (IPSPs) preceded membrane depolarization during early inspiration and followed during postinspiration and stage 2 expiration of the respiratory cycle. Iontophoresed bicuculline depressed the IPSPs. Intravenous dizocilpine caused a greatly prolonged inspiratory discharge of the phrenic nerve (apneusis) and suppressed late-inspiratory depolarization as well as early-inspiratory IPSPs, resulting in a small constant depolarization throughout the apneusis. NPBM or vagal stimulation after dizocilpine produced small, stimulus-locked excitatory postsynaptic potentials (EPSPs) in late-I neurons. Neurobiotin-labeled late-I neurons revealed immunoreactivity for glutamic acid decarboxylase as well as N-methyl-d-aspartate (NMDA) receptors. These results suggest that late-I neurons are GABAergic inhibitory neurons, while the effects of bicuculline and dizocilpine indicate that they receive periodic waves of GABAergic IPSPs and glutamatergic EPSPs. The data lead to the conclusion that late-I neurons play an important inhibitory role in IOS. NMDA receptors are assumed to augment and/or synchronize late-inspiratory depolarization and discharge of late-I neurons, leading to GABA release and consequently off-switching of bulbar inspiratory neurons and phrenic motoneurons.


1992 ◽  
Vol 73 (6) ◽  
pp. 2333-2342 ◽  
Author(s):  
A. Haji ◽  
R. Takeda ◽  
J. E. Remmers

Experiments were carried out on decerebrate cats to identify transsynaptic mediators of spontaneous postsynaptic inhibition of bulbar inspiratory and postinspiratory neurons. Somatic membrane potentials were recorded through the central micropipette of a coaxial multibarreled electrode. Blockers of type A gamma-aminobutyric acid (GABA-A) and glycine receptors were iontophoresed extracellularly from peripheral micropipettes surrounding the central pipette. Effective antagonism was demonstrated by iontophoresis of agonists with antagonists; application of strychnine antagonized the action of glycine but not GABA, and application of bicuculline antagonized the action of GABA but not glycine. In both types of neurons, iontophoresis of either antagonist depolarized the somatic membrane and increased input resistance throughout the respiratory cycle. Bicuculline preferentially depolarized the somatic membrane in both types of neurons during inactive phases. Strychnine increased the firing rate of inspiratory neurons during inspiration despite maintenance of somatic membrane potential at preiontophoresis levels. Tetrodotoxin reduced the effects of iontophoresed bicuculline and strychnine, suggesting that the action of the antagonists required presynaptic axonal conduction. The present results suggest that presynaptic release of both GABA and glycine contributes to tonic postsynaptic inhibition of bulbar respiratory neurons. GABA-A receptors appear to contribute to inhibition during inactive phases in inspiratory and postinspiratory neurons, whereas glycinergic mechanisms appear to contribute to inspiratory inhibition in inspiratory neurons.


1989 ◽  
Vol 286 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Kazuyoshi Otake ◽  
Hiroshi Sasaki ◽  
Kazuhisa Ezure ◽  
Motomu Manabe

1995 ◽  
Vol 78 (3) ◽  
pp. 856-861 ◽  
Author(s):  
S. J. England ◽  
J. E. Melton ◽  
M. A. Douse ◽  
J. Duffin

Exposure of anesthetized paralyzed vagotomized peripherally chemodenervated cats to hypoxia results in initial depression and subsequent loss of the phrenic neurogram. To determine whether hypoxic respiratory depression results from the inhibition of respiratory premotor neurons by bulbospinal neurons of the Botzinger complex (Bot-E neurons), extracellular recordings were made of dorsal and ventral respiratory group bulbospinal inspiratory neurons and Bot-E neurons during acute hypoxic hypoxia. All neurons recorded decreased firing rate during hypoxia. Bot-E neurons became silent before the loss of phasic phrenic activity during hypoxia and commenced firing before or coincident with the return of the phrenic neurogram during reoxygenation. Inspiratory neurons ceased firing coincident with phrenic silence. Dorsal respiratory group and ventral respiratory group neurons that had a late onset of firing with respect to the phrenic neurogram during normoxia fired progressively earlier in inspiration during hypoxia, an effect that was reversed during reoxygenation. These data are consistent with inhibition and/or disfacilitation as the mechanism of hypoxic respiratory depression but suggest that Bot-E neurons are not the source of this inhibition.


1990 ◽  
Vol 529 (1-2) ◽  
pp. 309-314 ◽  
Author(s):  
J. Lipski ◽  
H.J. Waldvogel ◽  
P. Pilowsky ◽  
C. Jiang

1992 ◽  
Vol 73 (6) ◽  
pp. 2233-2240 ◽  
Author(s):  
J. Iwamoto ◽  
S. P. Yang ◽  
M. Yoshinaga ◽  
E. Krasney ◽  
J. Krasney

Experiments were carried out on decerebrate cats to identify transsynaptic mediators of spontaneous postsynaptic inhibition of bulbar inspiratory and postinspiratory neurons. Somatic membrane potentials were recorded through the central micropipette of a coaxial multibarreled electrode. Blockers of type A gamma-aminobutyric acid (GABA-A) and glycine receptors were iontophoresed extracellularly from peripheral micropipettes surrounding the central pipette. Effective antagonism was demonstrated by iontophoresis of agonists with antagonists; application of strychnine antagonized the action of glycine but not GABA, and application of bicuculline antagonized the action of GABA but not glycine. In both types of neurons, iontophoresis of either antagonist depolarized the somatic membrane and increased input resistance throughout the respiratory cycle. Bicuculline preferentially depolarized the somatic membrane in both types of neurons during inactive phases. Strychnine increased the firing rate of inspiratory neurons during inspiration despite maintenance of somatic membrane potential at preiontophoresis levels. Tetrodotoxin reduced the effects of iontophoresed bicuculline and strychnine, suggesting that the action of the antagonists required presynaptic axonal conduction. The present results suggest that presynaptic release of both GABA and glycine contributes to tonic postsynaptic inhibition of bulbar respiratory neurons. GABA-A receptors appear to contribute to inhibition during inactive phases in inspiratory and postinspiratory neurons, whereas glycinergic mechanisms appear to contribute to inspiratory inhibition in inspiratory neurons.


1999 ◽  
Vol 82 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Kevin A. Davis ◽  
Ramnarayan Ramachandran ◽  
Bradford J. May

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.


Sign in / Sign up

Export Citation Format

Share Document